
AXIOM OF CHOICE, ZORN’S LEMMA AND WELL ORDERINGS

JOHN E. HUTCHINSON

“The Axiom of Choice is obviously true, the well-ordering principle obviously false, and who
can tell about Zorn’s lemma?” Jerry Bona

“The Axiom of Choice is necessary to select a set from an infinite number of socks, but not
an infinite number of shoes.” Bertrand Russell
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We will see that the axiom of choice, the well ordering principle and Zorn’s lemma each imply
one another. We follow the treatment in [Dud02, pp 12–15, 18–21].

In particular, the following surprising results are true.

• There is a well ordering of the real numbers and of Rn for any n.
• Every vector space has a basis in the linear algebra sense. For example,

(1) There is a a set of continuous functions

S ⊂ C(R) := {f : R→ R | f is continuous},
such that every f ∈ C(R) can be written uniquely as a finite sum of the form

f =

n∑
i=1

aiφi

for some n ≥ 1, ai ∈ R and φi ∈ S.
(2) For any Hilbert space H there is a set S ⊂ H such that every f ∈ H can be written

uniquely as a finite sum of the form

f =

n∑
i=1

aiφi

for some n ≥ 1, ai ∈ R (or C) and φi ∈ S.
(3) There is a set S ⊂ R such that every x ∈ R is a unique finite linear sum

x =

n∑
i=1

riyi

for some n ≥ 1, ri ∈ Q and yi ∈ S.

1. Preliminaries

Definition 1.1. (X,6) is a partial ordering if 6 is a binary relation on X such that

(1) a 6 b and b 6 c implies a 6 c (transitive),
(2) a 6 a (reflexive),
(3) a 6 b and b 6 a implies a = b (antisymmetric).

We write a < b if a 6 b and a 6= b.

Example 1.2. The following are partial orderings.

(1) For any set X, (P(X),⊂) (where “⊂” allows equality of sets).
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(2) An example we will use later is, with V a vector space, the partial ordering (X,⊂) where

X = {S ⊂ V | every finite subset of S is linearly independent}.
(3) The usual 6 ordering on Z, N or R.
(4) X = {a, b, c, d, e, f, g} with the partial ordering described in Figure 1.

Figure 1. x 6 y if x = y or there is a “rising” path from x to y. For example,
a 6 b, a 6 c and a 6 e.

Definition 1.3. (X,6) is a linear ordering if it is a partial ordering such that a, b ∈ X implies
a 6 b or b 6 a (note both are true precisely when a = b).
L ⊂ X is an initial segment of X if (y ∈ L & x < y) =⇒ x ∈ L.

Example 1.4. Only (3) in Example 1.2 is a linear ordering.

Definition 1.5. If (X,6) is a partial ordering then a ∈ X is a maximal element if there is no
b such that a < b. We say a is a greatest element if b 6 a for every b ∈ X.

Remark 1.6.

(1) There is at most one greatest element in a partial ordering.
(2) Every greatest element is a maximal element.
(3) In Figure 1 the maximal elements are e, c, f, g. There is no greatest element.
(4) An important example is (X,⊂) from (2) in Example 1.2. We say that S ⊂ V is a basis

for V if S ∈ X (i.e. if every finite subset of S is linearly independent), and if every v ∈ V
is a finite linear combination of elements from S.1

Definition 1.7. (X,6) is a well ordering if it is a linear ordering such that every non-empty
subset of X contains a least element.2

Example 1.8.

(1) The only example of a well ordering in Example 1.2 is N in (3).
(2) X = N ∪ {a} is a well ordering if we use the standard ordering on N and set n < a for

all n ∈ N.
(3) N followed by another copy of N is a well ordering.
(4) Many more examples can be constructed this way.

Definition 1.9. Suppose (X,6) is a well ordering.
The first or initial element is the least element of X.
If x ∈ X is any element then its successor is the least element y such that x < y, and is

denoted by s(x). Thus s(x) exists unless x is the greatest element of (X,6).
A successor element is an element of the form s(x).
A limit element x ∈ X is an element which is not the first element and not a successor

element. Equivalently, x is not the first element and for every y < x there is an element z such
that y < z < x.

1An orthonormal basis in the Hilbert space sense is not a basis in this sense. Here we are defining a basis in
the usual algebraic sense, sometimes called a Hamel basis — there is no notion of a limit.

It follows S ∈ X is maximal iff S is a basis for V Why?.
An orthonormal base in a separable Hilbert space is countable. A basis is always uncountable. Exercise.
2A least element of A ⊂ X is of course an element a ∈ A such that a 6 b for all b ∈ A.
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In Example 1.8(3) the “first” 1 is the initial element. The “second” 1 is a limit element. All
other elements are successor elements.

Proposition 1.10. If (A,6) and (B,4) are well orderings then one is isomorphic to an initial
segment (perhaps all) of the other.

Proof. We don’t need the result, and the proof is like that for the following Proposition. So I
leave it as an exercise. �

We often define a function by induction over the natural numbers by first defining f(1) and
then defining f(n) in terms of f(1), . . . , f(n−1). For example, the Fibonacci sequence is defined
by

f(1) = 1, f(2) = 1, f(n) = f(n− 2) + f(n− 1) for n ≥ 3.

In general, we can define
f(n) = g

(
fbI(n)

)
,

where g is a given function, I(n) is the initial segment {k : k < n}, and fbI(n) is the restriction
of f to I(n).

It is useful here to think of a function as a set of ordered pairs, so fbI(n) = {(k, f(k)) : k < n}.
We now generalise inductive definitions to well ordered sets.

Proposition 1.11 (Definition by Recursion). Suppose (X,6) is a well ordered set. Let I(x) =
{y : y < x} for each x ∈ X. Then given g with range T and appropriate domain, there is a
unique function f : X → T such that

(1) f(x) = g
(
fbI(x)

)
.

Proof. The idea is straightforward.
Let J(x) = {y : y 6 x}.3
Let G be the set of those z ∈ X such that there is a function of the form f : J(z)→ T which

satisfies (1) for all x ∈ J(z).
For each z ∈ G there can be at most one such function. If not, consider the first x 6 z where

two such functions differ and obtain an immediate contradiction, since by (1) they must agree
at x.

If y1 < y2 and there exist corresponding such functions f1 and f2, then f2bI(y1) is of the
required form and so equals f1.

It follows that G is an initial segment of X. Moreover, f is uniquely defined and satisfies (1)
for all x ∈ G.

If G 6= X let y be the least element in X \ G. Then we can use (1) to extend f from G to
G ∪ {y}. This contradicts the definition of G.

Hence G = X and we are done. �

2. Five equivalent versions of AC

See Figure 2 for the following.

Assertion 2.1 (AC: The Axiom of Choice). Suppose {Sx : x ∈ I} is a family of non-empty
sets. Then there exists a function f with domain I such that f(x) ∈ Sx for all x ∈ I.

Figure 2. Axiom of Choice with choice function indicated by black dots.

3It is very convenient to work with initial segments of the form J(x) as well as with I(x).
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Remark 2.2.

(1) A function is a set of ordered pairs, and so AC asserts the existence of a set with certain
properties.

The axiom of choice is different from most other axioms of set theory which assert
the existence of a set and in effect give a rule for membership of that set. For example,
the axiom of set theory asserting the existence of the union of a family of sets, or the
axiom asserting the existence of the power set of a set, gives a rule for membership of
the union or power set respectively.

(2) The axiom of choice as formulated above says that if Sx is non empty for every x ∈ I
then the cartesian product

∏
x∈I Sx is also non empty. So it certainly seems a very

harmless axiom! But it has some non obvious and even counter intuitive consequences,
as we will see.

(3) If the index set I is finite, then the axiom of choice follows from the other axioms of set
theory and the rules of logic (i.e. first order predicate calculus).

(4) If there is a “rule” for selecting an object from each Sx then one does not need the axiom
of choice. For example, if Sx = {0, 1} for each x then one can take f(x) = 0 for all x, or
f(x) = 1 for all x.

The following is a useful alternative to AC.

Assertion 2.3 (AC*). For any set X let I = {A ⊂ X : A 6= ∅}. Then there exists f : I → X
such that f(A) ∈ A for all A ∈ I.

Proposition 2.4. AC is equivalent to AC*.

Proof. (AC =⇒ AC*): AC* is the particular case of AC obtained by taking SA = A.

(AC* =⇒ AC): Assume AC*. Suppose {Sx : x ∈ I} is a family of non-empty sets. Let
X =

⋃
i∈I Sx. See Figure 3

Figure 3. X =
⋃

x∈I Sx. See Proposition 2.4.

By AC*
∃g : P(X) \ {∅} → X such that g(A) ∈ A ∀A ⊂ X,A 6= ∅.

Define
f(x) = g(Sx) ∀x ∈ I. �

Assertion 2.5 (WO: The Well-Ordering Principle). Every set can be well-ordered.

Assertion 2.6 (HMP: Hausdorff’s Maximal Principle). Suppose (X,6) is a partially ordered
set. Then X contains a maximal linearly ordered subset.4

Assertion 2.7 (ZL: Zorn’s Lemma). Suppose (X,6) is a partially ordered set such that every
linearly ordered subset L has an upper bound in X. (That is, ∃y ∈ X such that x 6 y for all
x ∈ L.)

Then (X,6) has a maximal element.

4L is a maximal linearly ordered subset if it is linearly ordered by 6 and if there is no larger linearly ordered

subset containing L.
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Here are two surprising propositions which follow from ZL and WO respectively.

Proposition 2.8. Every vector space V contains a basis S∗. That is, every finite subset of S∗ is
linearly independent and every v ∈ V is a unique finite linear combination of elements from S∗.

Proof. (The point here is that this includes the case where V is not finite dimensional).
We apply ZL. (One could alternatively use HMP.)
Let X be the collection of those S ⊂ V such that every finite subset of S is linearly indepen-

dent.
Then X is a partial ordering under ⊂.
If L is a linearly ordered subset of X then

⋃
{S : S ∈ L} is a subset of V with the property

that every finite subset is linearly independent (why? ). Hence
⋃
{S : S ∈ L} ∈ X and is an

upper bound for L (why? ).
By Zorn’s lemma, X has a maximal element S∗ (in fact many). Every element in V is a

finite linear combination of elements of S∗, as otherwise we could enlarge S∗ and contradict its
maximality. The fact this linear combination is unique follows from the fact every finite subset
of S∗ is linearly independent (why? ). �

Proposition 2.9. Rn can be well ordered.

Proof. By the well ordering principle. �

3. Proof of the various equivalences

Theorem 3.1. AC ⇐⇒ AC* ⇐⇒ HMP ⇐⇒ ZL ⇐⇒ WO.

Proof. We have already seen AC ⇐⇒ AC*.
We will show AC* =⇒ WO =⇒ HMP =⇒ ZL =⇒ AC*.

1: (AC* =⇒ WO): Suppose f is a “choice function” satisfying f(A) ∈ A for all ∅ 6= A ⊂ X.
The informal idea is to define the well ordering x1, x2, . . . , xn, . . . , xω, . . . by

x1 = f(X), x2 = f(X \ {x1}), x3 = f
(
X \ {x1, x2}

)
, . . . , xω = f

(
X \ {xn : n ∈ N}

)
, . . . .

To make this precise consider all well orderings (A,6) such that

(1) A ⊂ X,
(2) x ∈ A =⇒ x = f

(
X \ {y ∈ A : y < x}

)
.

We have just seen there are indeed some such well orderings.
We claim if (A,6) and (B,4) are two such well orderings then one is an initial segment of

the other (with the same ordering).
Suppose neither (A,6) nor (B,4) is an initial segment of the other.
Then it follows that for some x ∈ A, {y ∈ A : y 6 x}5 is not an initial segment of (B,4).6

Take the first x ∈ A such that {y ∈ A : y 6 x} is not an initial segment of (B,4). It follows
that D := {y ∈ A : y < x} is an initial segment of both (A,6) and (B,4).7

We will show x ∈ B and that by “adding” x to the end of D we get {y ∈ A : y 6 x} is an
initial segment of both A and B, contradicting the definition of x.

By property (2) for the well ordering (A,6), we have x = f(X \D).
On the other hand, since B \ D is non empty (as otherwise B is an initial segment of A)

there is a least element x∗ in B \D. Then by property (2) for the well ordering (B,4), we have
x∗ = f(X \D).

Hence x∗ = x and so by “adding” x = x∗ to the end of D we see {y ∈ A : y 6 x} is an initial
segment of (B,4), contradicting the definition of x.

Thus for any two well orderings satisfying (1) and (2), one is an initial segment of the other.
For this reason we can take the union of all such well orderings to get a well ordering of some
Y ⊂ X. If Y 6= X then we can enlarge the well ordering by adding f(X \ Y ) at the end, thus
contradicting the fact we took the union of all such well orderings.

5It is important for the proof to take {y ∈ A : y 6 x} and not {y ∈ A : y < x}. Note that doing this gives us
more information, since not every initial segment is of the form {y ∈ A : y 6 x}.

6Since otherwise, if {y ∈ A : y 6 x} is an initial segment of (B,4) for every x ∈ A, then taking the union one
can check that this implies A is an initial segment of (B,4).

7Since {y ∈ A : y < x} =
⋃

{y∈A:y<x}{z ∈ A : z 6 y}, and a union of initial segments is an initial segment.

Similarly for B.
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2: (WO =⇒ HMP): Suppose (X,6) is a partial ordering and assume there is a well ordering
(X,4).

The idea is to use the well ordering 4 to build up the maximal linearly ordered subset L
for 6. Let the well ordering be x1, x2, . . . , xn, . . . , xω, . . . . Set x1 ∈ L. If 6 gives a linear
ordering on {x1, x2} then include x2 ∈ L, otherwise exclude it. If 6 gives a linear ordering on
{x3}∪ {elements already in L} then include x3 ∈ L, otherwise exclude it. . . . If 6 gives a linear
ordering on {xω} ∪ {elements already in L} then include xω ∈ L, otherwise exclude it. Etc.

To make this precise we define L, or more precisely the characteristic function XL, by recursion
as in Proposition 1.11. That is

XL(x) =

{
1 if 6 is a linear ordering on {x} ∪ {y : y ≺ x & XL(y) = 1}
0 otherwise

.

Then ≺ is a linear order on L and L is also maximal in this respect.8

3: (HMP =⇒ ZL): Assume HMP.
Suppose (X,6) is a partially ordered set such that every linearly ordered subset has an upper

bound in X. By HMP there is a maximal linearly ordered subset L. Let y be an upper bound
for L.

Then y is clearly a maximal element for (X,6).9

4: (ZL =⇒ AC*): Assume ZL.
Given a set X, let F be the set of all choice functions f whose domain is a subfamily of the

family of all non empty subsets of X. By “choice” function it is meant as usual that f(A) ∈ A
for all A in the domain of f .

Define the partial order 6 on F by f 6 g if g is an extension of f . Then it is straightforward
to check that (F,6) is a partial ordering. Moreover, any linearly ordered subset has a greatest
element, obtained by taking the union (regarding a function as a set of ordered pairs) of all
functions in the linearly ordered subset.

By ZL there is a maximal element f ∈ (F,6). The domain of f must be P(X) \ {∅} as
otherwise we could extend f by adding an ordered pair (x,A) for any non empty set A ⊂ X and
x ∈ A.10 �
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