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1. Introduction

We consider mathematical models of a trading economy with both a finite number of agents
and a continuum of agents. The latter:

(1) is important as a limit model of the finite case;

(2) is necessary in order to model an economy with a pricing system that cannot be influenced
by individual agents;

(3) is necessary if the notions of maximising individual preferences by commodity exchange,
and maximising individual preferences by means of some pricing system, are to be equiv-
alent.

Various generalisations are possible. In particular, it is possible to include production.
The main references are [HK88, Hil74].

2. Finite Exchange Economy

A finite exchange economy £ = (Rﬁ_,ta,ea;a € A) = (xa,eq;a € A) is described by the
primitive concepts of commodity space, set of agents, preference relation and initial endowment.
2.1. Commodity Space. A commodity is a good or service. It is represented by points on
R4 =[0,00). (And so commodities are “infinitely divisible”.)

Assume there are ¢ distinct commodities.

A commodity bundle is a point in commodity space Rﬂ ={(x1,...,20) 1 x; >0 Vi}.!

2.2. Set of Agents. There is a finite set A of agents (traders).

Date: January 8, 2025.
IFor points z,y € RY we write x < y if z; < y; Vi, and write z < y if < y,x # .
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2.3. Preference Relations. There is a preference relation (or desirability relation) >, for each
a € A. Thus is a binary relation on the consumption set Rﬁ.Q A generic preference relation is
denoted by .
T =, vy is interpreted as “for a, x is at least as desirable as y”. i.e. “x is as good as or better
than g”.
Unless o.w. stated we assume > 1is:
o reflerive: x = x;
e complete: x> y or y »= x (possibly both);
e transitive: x =y and y = z = x > z;
e continuous: {z:z =y} and {z : y = x} are closed Vy € R
Assuming just reflexivity and transitivity we define
(1) z is as equally desirable as y, written z ~ y, by = »= y and y = x (z and y lie on the
same indifference set for a);
(2) x is preferred to (more desirable than) y, written x > y, by x = y and not x ~ y.
Continuity is then equivalent to requiring that if x > y then for all v in some nbd of x and all v
in some nbd of y, u > v.

It is often convenient to represent > by a Pareto utility function w : Rﬂ_ — R, where u(z) >
u(y) iff « > y. Indifference sets are represented by level sets of u. See Figure 1.

RN

FIGURE 1. Possible level sets of >.

The following are further restrictions on the preference relations:
Monotonicity: y > x and y # x => y > x. (“more is better”)
Convezity: {y:y = x} to be convex for all x € Rﬁ_.

Strict convezity: x ~y, c#y, 0<A<1l= Az + (1 =Ny = y.

2.4. Initial Endowments. The initial endowment (allocation) for a is an element e, € R \{0}.
Every agent has non zero initial endowment as o.w. there is nothing to trade and he will not
be a part of the economy.

3. Redistribution in an Economy

3.1. Defined concepts. Define the following for an economy & = (=, eq;a € A):

(1) A coalition S is a non empty subset of A.

(2) An allocation is a map f : A — RY. It is a redistribution (feasible allocation) if
Yo fla) =>",e(a). (Conservation of commodities.)

(3) A coalition S can improve upon a redistribution f (using its original endowment ) s e(a))
if there is a redistribution g such that
(a) g(a) = f(a) for all a € S, (every agent in S has an improved situation)
(b) Paes 9(a) =X qesela).

W.lo.g. one can take g(a) = f(a) Va ¢ S, i.e. only those resources in S are redistributed.

3.2. Edgeworth Box. The “Edgeworth Box” in Figure 2 represents two traders and two com-
modities. One can do this in R? for two traders and £ commodities.

The origin for the first is in the lower left corner, the indifference lines are solid, and the
initial endowment is e;. The origin for the second is in the upper right corner, the indifference
lines are dotted, and the initial endowment is e;. The total endowment is € = e; 4+ e5 and so the
initial endowment for both traders is represented by the point e; with origin lower left corner

21t would be more realistic to restrict to a convex subset X of Rﬁ_, which may depend on a and represents the
set of commodity bundles sufficient for the agent a to survive. The theory is essentially unchanged.
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FIGURE 2. Two traders with two commodities. See [Hil82, p835].

— this being the same as the point ey with origin upper right corner. Each point in the box
corresponds to a redistribution.

The coalition consisting of just the first trader can improve upon any allocation below the
indifference line through e;. The coalition consisting of just the second trader can improve upon
any allocation above the dotted indifference line through e;. This leaves the shaded lens region.
In here the coalition of both traders can improve upon any allocation which is not in the set of
points C(€) where indifference lines are tangential.

3.3. Core of an economy. The core C(£) of the economy £ = (=4, €e4;a € A) is the set of all
redistributions that no coalition can improve upon in the previous sense.?

That is, a redistribution f € C(€) iff no coalition can improve upon f by redistributing its
initial endowment. More precisely, a redistribution f € C(&) iff there is no coalition S and
redistribution g such that

(1) Va €S (g(a) - f(a)) and Y g(a) = e(a).

acs a€sS

4. Prices in an Economy
Consider an economy &€ = (=g, e,;a € A). We introduce an additional concept.

4.1. Pricing System. A pricing system or price vector in £ is a vector p € Rﬁ. (Usually
p>> 0, i.e. p; > 0 Vi). The interpretation is that p-x =), psx, is the price of the commodity
bundle z € R, . (We assume monotonicity. )

The budget set for a € A, corresponding to the pricing system p and initial endowment e,, is
Bleasp) ={z €RE ip-2 <p-ea}.
It is interpreted as the set of commodity bundles that a can afford within his “budget” as given
by p and e,.

The income of a is p - a.
The demand set for a € A is

¢(Zar€a,p) = {z € Bea, p) : By € Blea,p) st y -}
= {z € Blea,p) 1y € Blea,p) = = = y}
:{xERﬁ_:pm::pfa & y=-x=p-y>p- -z}
It is the set of commodity bundles that a cannot improve upon within his budget, and is deter-
mined by his preferences, initial endowment and the pricing system. In other words, it is the set

of “most preferred” bundles available to a within his budget.
The demand set is a singleton if the preference set is strictly convex and p >> 0.

3If such an allocation f is proposed, no coalition will be able to improve on f by redistributing its original
endowment. ***But could S improve the situation of all its members by redistributing the endowment obtained
from f itself 7¥**
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4.2. Walras Equilibrium. A Walras equilibrium for £ is a redistribution f and a price system
p such that, for every a € A, f(a) is in the demand set ¢(>q, €q, p).
More precisely,

f(a) € ¢(>’a7€a7p) Va € A,
@) > f@) = ela).
acA a€A
In other words, (f,p) is a Walras equilibrium iff no agent a can improve upon f(a) with the
prevailing price system and his budget. That is,
(3) VacA x>+, fla)=p-z>p- fla).

Alternatively, a Wallas equilibrium is a redistribution and a price system such that total
demand equals total supply. One also call this a price equilibrium or competitive equilibrium.* A
Walras price system decentralises the redistribution problem.

The redistribution f is called a Walras allocation and the set of Walras allocations is denoted
by W(E).

The price vector p is called a Walras price vector or equilibrium price vector and the set of
equilibrium price vectors is denoted by II(E).

In Figure 2 the (unique) Walras equilibrium for the initial endowment e; is (f*,p), where p
is normal to the line through e; and f*.

Proposition 4.1. W(&) C C(€). (No assumptions on the structure of “~” here.)

Proof. Assume f € W(E) with equilibrium price vector p. Then by (3) Va € A,
(4) T =g fla) = p-x>p- fla)
Assume f ¢ C(E). Then by (1) 3 a redistribution g s.t.

(5) Va e S (g9(a) =q f(a)) and Zg(a) = Z e(a).
acsS acS
If a € S, one has from the first part of (5) that g(a) =, f(a), and hence from (4) that
p-gla)>p-e(a). Hence p- 3. cgg(a) >p- 3 cqela)
But from the second part of (5), p-> ,cq9(a) =p > ,cqela).
This contradiction implies the second assumption is false and so W(E) C C(E). O
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4This is misleading terminology as there is not any competition involved.



