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Question 1

(i) Prove that (
1 + cos

2π

n
+ i sin

2π

n

)n
= −2n cosn

π

n
.

(ii) Prove that, if n is any integer, positive or negative,(
−1 + i

√
3
)n

+
(
−1− i

√
3
)n

has either the value 2n+1 or the value −2n.

Solution.

1. (i)

1 + cos
2π

n
+ i sin

2π

n
= 1 + e2πi/n = eπi/n

(
e−πi/n + eπi/n

)
= 2 cos

πi

n
eπi/n.

Hence (
1 + cos

2π

n
+ i sin

2π

n

)n
= 2n cosn

π

n
eπi = −2n cosn

π

n
.

(ii)

−1 + i
√

3 = 2

(
−1

2
+ i

√
3

2

)
= 2

(
cos

2π

3
+ i sin

2π

3

)
= 2 e2πi/3.

Similarly,

−1− i
√

3 = 2

(
−1

2
− i
√

3

2

)
= 2

(
cos−2π

3
+ i sin−2π

3

)
= 2 e−2πi/3.

Taking the nth power of each side and adding gives(
−1 + i

√
3
)n

+
(
−1− i

√
3
)n

= 2n
(
e2nπi/3 + e−2nπi/3

)
= 2n+1 cos

2nπ

3
. (1)

If n = 3k for some integer k, then

cos 2nπ/3 = cos 2kπ = cos 0 = 1. (2)

If n = 3k ± 1 then
cos 2nπ/3 = cos(2kπ ± 2π/3) = cos±2π/3 = −1/2. (3)

The required result follows from (1), (2) and (3).

Tips & Tricks The idea in both parts is to write a+ ib in the form reiθ before taking powers.
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Question 2

2. (i) Draw sketches to show the loci represented on the Argand diagram by
(a) |z − a| = k,
(b) arg(z − a) = α,
(c) |z − a|+ |z − b| = c,

where a, b are complex constants, k, c, α are real constants, and c > |a− b|.

(ii) Prove that, if z 6= 0,

(a) u = z +
|z|2

z
is always real,

(b) v =
|z| − iz
|z|+ iz

is always pure imaginary, provided the real part of z is not zero, and that, if

arg z = θ, then v = −i(sec θ + tan θ).

Solution.

2. (i)

(a) The first sketch is the circle represented by |z − a| = k.
(b) The second sketch is the line segment given by arg(z − a) = α.

(c) The third sketch is the ellipse given by |z − a|+ |z − b| = c, where the line segments connecting z
to a and b have lengths |z − a| and |z − b| respectively, and sum to c.

(ii) Let z = reiθ in polar form. By assumption, r 6= 0.

(a) We have

u = z +
|z|2

z
= reiθ +

r2

reiθ
= r

(
eiθ + e−iθ

)
= 2r cos θ,

which in particular is real.
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(b) By assumption, z has real part not zero, or equivalently z is not pure imaginary, or equivalently
in polar form θ 6= π

2 ,
3π
2 . Then

v =
|z| − iz
|z|+ iz

=
r − ireiθ

r + ireiθ
=

1− ieiθ

1 + ieiθ
=

1− ieiθ

1 + ieiθ
× 1− ie−iθ

1− ie−iθ
=

1− ie−iθ − ieiθ − 1

1− ie−iθ + ieiθ +−1

=
−2i cos θ

2− 2 sin θ
= −i cos θ

1− sin θ
= −i cos θ

1− sin θ
× 1 + sin θ

1 + sin θ

= −icos θ(1 + sin θ)

cos2 θ
= −i1 + sin θ

cos θ
= −i(sec θ + tan θ).

The assumptions on z were used to ensure the denominator in the definition of v is non-zero, and the
denominators 1−ie−iθ and 1+sin θ introduced in the first and second lines above are also non-zero.

Tips & Tricks In part (ii) first write z in the form reiθ. Then part (ii)(a) is easy.

For part (ii)(b), in the first line for the calculation of v, the term (1−ie−iθ) in the introduced factor
1 = (1− ie−iθ)/(1− ie−iθ) is just the complex conjugate of 1 + ieiθ. In this way the new denominator
of v is real. (So this is a good move)

In the second line of the calculation the term 1 + sin θ, in the new factor 1 = (1 + sin θ)/(1 + sin θ),
has the property that when multiplied by 1−sin θ the result is cos2 θ (which is the second good move).
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Question 3

Part 1 F is the point (ae, 0) and d is the line x = a/e (e > 1). M is the foot of the perpendicular
from a variable point P to d, and P moves so that

FP 2 = e2PM2.

Find the equation of the locus.
Draw a sketch showing clearly the principal axes of the curve, the foci, the directrices and the

asymptotes, marking on each of them its equation or coordinates.
Express e in terms of α, the angle between the asymptotes.

Part 2 A line, parallel to one asymptote, is drawn through a focus F of a hyperbola. It meets the
hyperbola in H, the directrix corresponding to F in D, the other asymptote in K and the conjugate
axis in R. Prove that

FH = HD,

FK = KR.

Solution.

Part 1

Figure 1: Hyperbola with focus F and directrix d, traced out by P moving so FP 2 = e2PM2.

See Figure 1. Let P be the point (x, y). Then M = (a/e, y). Since FP 2 = e2PM2, it follows that

(x− ae)2 + y2 = e2(x− a/e)2 = (ex− a)2

∴ a2(e2 − 1) = x2(e2 − 1)− y2

∴
x2

a2
− y2

a2(e2 − 1)
= 1. (4)

The last equation is the equation of the locus. It is in the standard form
x2

a2
− y

2

b2
= 1 for an hyperbola,

with b = a
√
e2 − 1.

It follows from standard formulae for an ellipse that
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• the principal axes are y = 0 and x = 0,

• the foci are ±
((
a2 + b2

)1/2
, 0
)

= ±(ae, 0),

• the directices are x = ± a2√
a2 + b2

, i.e. x = ±a/e (i.e. the line d and its mirror image in the

y-axis),

• and the asymptotes are y = ± b
a
x, i.e. y = ±

√
e2 − 1x.

If α is the angle between the asymptotes then tan(α/2) =
√
e2 − 1 and so α = 2 arctan

√
e2 − 1.

We can also simplify this as follows:

tan2 α

2
= e2 − 1

∴ sin2 α

2
= e2 cos2

α

2
− cos2

α

2

∴ 1 = e2 cos2
α

2

∴ cos
α

2
= e−1

∴ α = 2 arccos (e−1).

Part 2

Figure 2: FH = HD, FK = KR.

See Figure 2. We can take the hyperbola to be the same as that in Part 1, since the most general

hyperbola can be represented in the standard form
x2

a2
− y2

b2
= 1, and (4) is in this form if we take

e =
√

1 + b2

a2
.

The equation of the line through F and parallel to the asymptote y =
√
e2 − 1x is

y =
√
e2 − 1 (x− ae)

since this has the required slope and passes through F . (If we took the second asymptote the following
argument would be similar. But it is also clear that it is sufficient to just do one case, as the other in
essence follows geometrically be reflecting everything in the x-axis.)

In order to prove FH = HD and FK = KR, since these are parallel segments, it is sufficient
to prove that the corresponding projections onto the x-axis are equal. We write FHx etc. for these
projections, and similarly write Fx, Hx etc. for the x-coordinates of F , H etc.
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Then
• Fx = ae.
• At H, y =

√
e2 − 1 (x − ae) and x2 − y2/(e2 − 1) = a2. Hence x2 − (x − ae)2 = a2, therefore

2xae = a2(1 + e2) and so x = a/(2e) + ae/2. That is

Hx =
a

2e
+
ae

2
.

• At K, y =
√
e2 − 1(x− ae) and y = −

√
e2 − 1x, so x = ae/2. That is

Kx =
ae

2
.

• Clearly,

Dx =
a

e
, Rx = 0.

It follows that

FHx = Fx −Hx =
a

2e
− ae

2
,

HDx = Hx −Dx =
a

2e
− ae

2
,

FKx = Fx −Kx =
ae

2
,

KRx = Kx −Rx =
ae

2
.

This proves the required equalities.
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Question 4

Express xn − 1 as a product of real linear or quadratic factors, distinguishing the cases n odd and n
even.

Thence or otherwise prove that

sin
π

n
sin

2π

n
. . . sin

(
n− 1

2n
π

)
=

√
n

2n−1

when n is odd, and find the corresponding result when n is even.

Proof.
First assume n is odd. Then the solutions of xn = 1 can be written in the form1

x = 1, x = e±
2πi
n
j for j = 1, . . . ,

n− 1

2
.

Hence

xn − 1 = (x− 1)

n−1
2∏
j=1

(
x− e

2πi
n
j
)(

x− e−
2πi
n
j
)

= (x− 1)

n−1
2∏
j=1

(
x2 − 2x cos

(
2πj

n

)
+ 1

)
. (5)

This is a product of real linear and quadratic factors, as required.

Dividing both sides by x− 1 it follows that for x 6= 1

1 + x+ x2 + · · ·+ xn−1 =

n−1
2∏
j=1

(
x2 − 2x cos

(
2πj

n

)
+ 1

)
. (6)

Since both sides are polynomials in x the limit as x→ 1 of both sides are equal, and so

n =

n−1
2∏
j=1

(
2− 2 cos

(
2πj

n

))
=

n−1
2∏
j=1

4 sin2

(
πj

n

)
= 2n−1

n−1
2∏
j=1

sin2

(
πj

n

)
,

using cos(2θ) = 1− 2 sin2 θ. Taking the square root of each side and noting each of the sine terms is
positive,

n−1
2∏
j=1

sin

(
πj

n

)
=

√
n

2n−1
, (7)

as required.

If n is even, then the solutions of xn = 1 can be written in the form

x = ±1, x = e±
2πi
n
j for j = 1, . . . ,

n

2
− 1.

Hence

xn − 1 = (x− 1)(x+ 1)

n
2
−1∏
j=1

(
x− e

2πi
n
j
)(

x− e−
2πi
n
j
)

= (x− 1)(x+ 1)

n
2
−1∏
j=1

(
x2 − 2x cos

(
2πj

n

)
+ 1

)
. (8)

1The solutions are uniformly distributed around the unit circle in the complex plane. They are written here in complex
conjugate pairs, apart from the solution x = 1.
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This is again a product of real linear and quadratic factors, as required.

Dividing both sides by x− 1 it follows that for x 6= 1

1 + x+ x2 + · · ·+ xn−1 = (x+ 1)

n
2
−1∏
j=1

(
x2 − 2x cos

(
2πj

n

)
+ 1

)
.

Once again taking the limit as x→ 1,

n = 2

n
2
=1∏
j=1

(
2− 2 cos

(
2πj

n

))
= 2

n
2
−1∏
j=1

4 sin2

(
πj

n

)
= 2× 2n−2

n
2
−1∏
j=1

sin2

(
πj

n

)
= 2n−1

n
2
−1∏
j=1

sin2

(
πj

n

)
.

Again taking the square root of both sides,

n
2
−1∏
j=1

sin

(
πj

n

)
=

√
n

2n−1
, (9)

as required.

Tips & Tricks Obtaining the factorisation in (5) is not that difficult, once you know how to pair
conjugate roots to get real quadratic factors. More precisely, if x = w and x = w are both solutions
of xn = 1, the x− w and x− w are both factors and hence so is

(x− w)(x− w) = x2 − 2xRe(w) + |w|2,

which is real quadratic and where Re means “the real part of”.
But the other problem in getting to (7) from (5) is that the angles in (5) have increments 2π/n,

whereas in (7) the incrments are π/n. This leads one to considering the formula cos(2θ) = 1−2 sin2 θ,
which indicates the approach to take.

The final twist is that one really needs x = 1 in (6), whereas it was derived under the assumption
x 6= 1. The more general fact that has been used is that if f(x) = (x − a) g(x) for x = a and all x
near a, then f ′(a) = g(a). (Assuming g is continuous at a. Exercise.)
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Question 5

Draw a sketch to show the relation between the point (a cosφ, b sinφ) on the ellipse x2/a2 + y2/b2 = 1
and the corresponding point on the auxiliary circle.2

Write down the equation of the circle on which the points (x1, y1), (x2, y2) are the extemities of a
diameter.

P is a variable point on an ellipse of which F is one focus. Prove the circle on PF as diameter
touches the auxiliary circle of the ellipse.

Solution.

Without loss of generality we take a > b.
1.

Figure 3: The larger circle is the auxiliary circle for the ellipse.

See Figure 3. The question is a little ambiguous, but the point corresponding to P on the auxiliary
circle (outer) circle O is usually taken to be A = (a cosφ, a sinφ). (The point corresponding to P on
the inner circle is B = (b cosφ, b sinφ).)

2. The equation of the circle on which the points (x1, y1), (x2, y2) are the extemities of a diameter
is

(x− x1)2 + (y − y1)2 + (x− x2)2 + (y − y2)2 = (x1 − x2)2 + (y1 − y2)2,

which simplifies to
x2 + y2 − x(x1 + x2)− y(y1 + y2) + (x1x2 + y1y2) = 0. (10)

3 See Figure 4. The focus F has coordinates (±c, 0) where

c > 0, c2 = a2 − b2. (11)

Without loss of generality because of symmetry, we take F = (c, 0).
The point P on the ellipse has coordinates (a cosφ, b sinφ) for some φ ∈ [0, 2π). Fix φ. From (10),

the equation of the circle C on PF as diameter is

x2 + y2 − x(a cosφ+ c)− y b sinφ+ a c cosφ = 0. (12)

2The auxiliary circle for an ellipse is the circle whose diameter is the major axis of the ellipse.

9



Figure 4: Ellipse with auxiliary circle O. The circle C with diameter PF touches O.

In order to prove the circle C on PF as diameter touches the auxiliary circle O of the ellipse, we will
show that every point (x, y) ∈ O satisfies

x2 + y2 − x(a cosφ+ c)− y b sinφ+ a c cosφ ≥ 0, (13)

and that some point (x, y) ∈ O satisfies (12).
Take an arbitrary point (x, y) = (a cos θ, a sin θ) ∈ O, and substituting into the left side of (13) we

want to show
a
(
a− cos θ(a cosφ+ c)− b sin θ sinφ+ c cosφ

)
≥ 0 (14)

for all θ, and show that equality holds for some θ.

Using the trigonometric identities

t = tan
θ

2
, sin θ =

2t

1 + t2
, cos θ =

1− t2

1 + t2
, tan θ =

2t

1− t2
, (15)

we want to show for all t that

a− a1− t2

1 + t2
cosφ− b 2t

1 + t2
sinφ+ c

(
cosφ− 1− t2

1 + t2

)
≥ 0, (16)

and that equality holds for some t.
Multiplying through by the positive term 1 + t2 we obtain the following quadratic in t:

a(1 + t2)− a(1− t2) cosφ− 2bt sinφ+ c(1 + t2) cosφ− c(1− t2)
= t2(a+ a cosφ+ c cosφ+ c)− 2bt sinφ+ (a− a cosφ+ c cosφ− c)
= t2(a+ c)(1 + cosφ)− 2bt sinφ+ (a− c)(1− cosφ). (17)

Assuming initially that φ 6= π, it follows that the coefficient of t2 is > 0. The discriminant of the
quadratic is

4
(
b2 sin2 φ− (a2 − c2)(1− cos2 φ)

)
= 4(b2 − a2 + c2) sin2 φ = 0, (18)

using (11).
Since the quadratic (17) has zero discriminant and positive leading term, it is always ≥ 0, and

takes the minimum value 0. Moreover, this minimum value occurs at

t =
2b sinφ

2(a+ c)(1 + cosφ)
=

b sinφ

(a+ c)(1 + cosφ)
. (19)
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This answers the question if φ 6= π, since it follows that the circle C lies inside the auxiliary circle
O and meets the auxiliary circle when t is as in (19). Moreover, C and the auxiliarly circle must touch
tangentially from geometric considerations. This also follows from the fact that the derivative of the
quadratic (17) at the minimum is zero.

Finally, if φ = π then P = (−π, 0), and from the previous diagram it is clear in this case that C
lies inside the auxiliary circle and the two circles touch at P .

Tips & Tricks Once we have reached (14), it is reasonable to think about minimising a quadratic,
and to guess that one possibility might be to use the half angle identities in (15). Fortunately, with a
little care, this does work.

Addendum

Figure 5: Geometric construction of the touching point T of the red circle and the auxiliary circle.
PT ′ is parallel to and has equal length to OF .

From (15) and (19), the value of θ0 for the point T = (a cos θ0, a sin θ0) at which C touches the
auxiliary circle, satisfies

tan θ0 =
2t

1− t2
, (20)

where t is as in (19).
We calculate

1− t2 = 1− b2 sin2 φ

(a+ c)2(1 + cosφ)2

=
(a+ c)2(1 + cosφ)2 − (a2 − c2)(1− cos2 φ)

(a+ c)2(1 + cosφ)2
(from (11))

=
(a+ c)(1 + cosφ)− (a− c)(1− cosφ)

(a+ c)(1 + cosφ)

=
2(a cosφ+ c)

(a+ c)(1 + cosφ)
.

From this, (19) and (20) it follows that

tan θ0 =
b sinφ

a cosφ+ c
, θ0 = arctan

b sinφ

a cosφ+ c
.
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Looking at Figure 5, it follows that the point T can be found as follows. Draw a line parallel to
the x-axis through P and move taway from the y-axis by a distance equal to the focal length c. Call
this point T ′ and draw a straight line from the origin through T ′. Then T is the intersection point of
this line with the auxiliary circle. (Why? )
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Question 6

Prove that the feet of the four normals to the ellipse, E = 0, where E ≡ x2/a2 + y2/b2 − 1, from the
point (x1, y1) are the intersections of E = 0 with the rectangular hyperbola H1 = 0, where

H1 ≡
(

1

b2
− 1

a2

)
xy +

y1
a2
x− x1

b2
y.

Give a reason why, if λH1 + E = 0 represents a line pair3, then this line pair is one of the three
which join pairs of the feet of the four normals.

The join of the feet of two of these four normals is the line

lx

a
+
my

b
+ 1 = 0;

prove that the join of the other two feet is

x

la
m+

y

mb
− 1 = 0.

Find the values of x1, y1 in terms of l,m.

Solution.

Figure 6: Ellipse and the four normals from a point (x1, y1).

1 The normal to E = 0 at (x, y), which is the direction of maximum increase in E = E(x, y) at
(x, y), is given by (

∂E

∂x
,
∂E

∂y

)
=

(
2x

a2
,
2y

b2

)
= 2

( x
a2
,
y

b2

)
.

So P = (x, y) is the foot of a normal from (x1, y1) to E = 0 if and only if

(i)
x2

a2
+
y2

b2
− 1 = 0, and

(ii)
x− x1
x/a2

=
y − y1
y/b2

.

We can rewrite (ii) as (
1

b2
− 1

a2

)
xy +

y1
a2
x− x1

b2
y = 0.

3This means that λH1 + E can be written as a product of two linear factors. Note that in this case, if both H1 = 0
and E = 0 then at least one of the two linear factors equals zero.
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Hence the feet of the four normals to E = 0 from (x1, y1) are the intersections of E = 0 with H1 = 0.

2 Suppose λH1 + E = 0 represents the line pair a1x + b1y + c1 = 0 and a2x + b2y + c2 = 0. This
means that for some a1, b1, c1 and a2, b2, c2, and for all x, y,

λH1 + E ≡ (a1x+ b1y + c1)(a2x+ b2y + c2). (21)

At each of the four points P = P (x, y) which are the feet of the four normals, one has E = 0 and
H1 = 0 and so either a1x+ b1y+ c1 = 0 or a2x+ b2y+ c2 = 0. Since no three points on E = 0 are in a
straight line, two of the feet must satisfy a1x+b1y+c1 = 0 and the other two satisfy a2x+b2y+c2 = 0.

In other words, the line pair is one of the three which join pairs of the feet of the four normals.

3 It is given that the join of the feet of two of these four normals is the line

lx

a
+
my

b
+ 1 = 0.

(Note that any line can be written in this form.)
It follows from (21) that the join of the other two feet can be written in the form αx+βy+ γ = 0,

where

λ

((
1

b2
− 1

a2

)
xy +

y1
a2
x− x1

b2
y

)
+
x2

a2
+
y2

b2
− 1 =

(
lx

a
+
my

b
+ 1

)
(αx+ βy + γ) (22)

for all x, y.
Equating the coefficients of x2, y2 and the constant terms, gives rspectively,

α =
1

la
, β =

1

mb
, γ = −1. (23)

That is, the join of the other two feet is

x

la
+

y

mb
− 1 = 0. (24)

4 From (22), using (23) and equating the coefficients of xy,

λ

(
1

b2
− 1

a2

)
=
lβ

a
+
mα

b
=

l

abm
+

m

abl
=
l2 +m2

ablm

∴ λ =
ab(l2 +m2)

(a2 − b2)lm
. (25)

Again from (22), equating the coefficients of x and of y and using (23) and (25), gives respectively

y1 =
a2α

λ
= a2

1

la

(a2 − b2)lm
ab (l2 +m2)

=
(a2 − b2)m
b (l2 +m2)

,

x1 = −b
2β

λ
= −b2 1

mb

(a2 − b2)lm
ab (l2 +m2)

= − (a2 − b2)l
a (l2 +m2)

.

(26)

Tips & Tricks
1. The first point is that the normal to E = 0 points in the direction of maximum increase ot the

quantity E. Ths is a general and important fact.
2. The idea of a quadratic in two variables (here λH1 + E for some λ) being factorisable into two

linear factors is interesting and used in the subject of algebraic geometry.
3. Note how (25) and (26) are proved by equating coefficients.
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Question 7

Sketch the graph of the function
x = tan y

and indicate how a range of principal values of the inverse tangent should be chosen. Denoting the
principal value of he inverse tangent by tan−1 x, give a formula for the general value of the inverse
tangent.

If a sequence is defined by
u0 = 1

un+1 =
2n+1un + 1

2n+1 − un

(27)

show that

lim
n→∞

tan−1 un =
π

4
+
∞∑
1

tan−1
1

2n
. (28)

Using the tables compute the value of this limit to two significant figures.

Spoiler The limit (28) is wrong, see (39).

Solution.

Figure 7: Graph of y = tan−1 x (i.e. of x = tan y for y ∈ (−π/2, π/2))

1 The principal values of the inverse function y = tan−1 x are chosen in the open interval (−π/2, π/2).
The general value of the inverse tangent of x is tan−1 x+ kπ for k an arbitrary integer.

2 The formula for the tangent of the sum of two angles is

tan(α+ β) =
tanα+ tanβ

1− tanα tanβ
, (29)

provided tanα tanβ 6= 1.
Suppose u, v ∈ R. Let α = tan−1 u and β = tan−1 v, in which case α, β ∈ (−π/2, π/2) and

u = tanα, v = tanβ. It follows from (29) that

tan(tan−1 u+ tan−1 v) =
u+ v

1− uv
, (30)

and so

tan−1
u+ v

1− uv
= tan−1 u+ tan−1 v, (31)

provided
uv 6= 1, tan−1 u+ tan−1 v ∈ (−π/2, π/2). (32)
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In order to apply (31) to (27), write (27) in the form

un+1 =
un + 2−(n+1)

1− un2−(n+1)
.

It follows
tan−1 un+1 = tan−1 un + tan−1 2−(n+1), (33)

provided
un2−(n+1) 6= 1, tan−1 un + tan−1 2−(n+1) ∈ (−π/2, π/2). (34)

Hence, except for the fact that we have not yet checked the second condition in (34),

tan−1 u1 = tan−1 u0 + tan−1
1

2
=
π

4
+ tan−1

1

2

tan−1 u2 = tan−1 u1 + tan−1
1

22
=
π

4
+ tan−1

1

2
+ tan−1

1

22

tan−1 u3 = tan−1 u2 + tan−1
1

23
=
π

4
+ tan−1

1

2
+ tan−1

1

22
+ tan−1

1

23

...

tan−1 un =
π

4
+

n∑
k=1

tan−1
1

2k

...

(35)

Therefore,

lim
n→∞

tan−1 un =
π

4
+
∞∑
1

tan−1
1

2n
,

as required.

It does remain, however, to check that (34) holds for each line in (35). We have, noting π/2
= 1.5707963268 . . . ,

tan−1 u0 + tan−1
1

2
=
π

4
+ tan−1

1

2
≈ 1.249 < π/2, so (34) applies and tan−1 u1 is as in (35),

tan−1 u1 + tan−1
1

22
=
π

4
+ tan−1

1

2
+ tan−1

1

22
≈ 1.494 < π/2, so again tan−1 u2 is as in (35),

tan−1 u2 + tan−1
1

23
=
π

4
+ tan−1

1

2
+ tan−1

1

22
+ tan−1

1

23
≈ 1.618>π/2, so (34) does not apply.

This means we cannot apply (34) and (33) in this case.

However, suppose in (30) that tan−1 u + tan−1 v ∈ (π/2, 3π/2). In this case it follows from (30)
and 1 that

tan−1
u+ v

1− uv
= tan−1 u+ tan−1 v − π, (36)

Hence, correcting (35), one has

tan−1 u3 = tan−1 u2 + tan−1
1

23
− π = −3π

4
+ tan−1

1

2
+ tan−1

1

22
+ tan−1

1

23
≈ −1.523. (37)

Note that −1.523 ∈ (−π/2, π/2).
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We can now continue as in (35) and obtain

tan−1 u3 = tan−1 u2 + tan−1
1

23
− π = −3π

4
+

3∑
k=1

tan−1
1

2k

tan−1 u4 = tan−1 u2 + tan−1
1

23
− π = −3π

4
+

4∑
k=1

tan−1
1

2k

...

tan−1 un = −3π

4
+

n∑
k=1

tan−1
1

2k

...

(38)

This time the argument is correct, since for all n ≥ 3, (and using tan−1 x < x for all x > 0 in the
second line below),

−3π

4
+

n∑
k=1

tan−1
1

2k
> −3π

4
+

3∑
k=1

tan−1
1

2k
≈ −1.523 > −π/2,

−3π

4
+

n∑
k=1

tan−1
1

2k
< −3π

4
+

n∑
k=1

1

2k
< −3π

4
+ 1 < 0 < π/2.

So finally we have the correct limit:

lim
n→∞

tan−1 un = −3π

4
+
∞∑
1

tan−1
1

2n
. (39)

4 In order to compute the value of this limit to two significant figures, one approach is just to sum
enough terms in the series.

This gives

− 2.35619449 + 0.46364761 + 0.24497866 + 0.12435499 + 0.06241881 + 0.03123983 + 0.01562373

+ 0.00781234 + 0.00390623 + 0.00195312 + 0.00097656 + . . .

= −1.39928261 . . .

Up to two significant places this is -1.4, and up to 2 significant decimal places this is -1.40.

Remark The tables provided in the examination were probably insufficient to give the correct
estimate to two significant decimal places.

Here is the method the examiners wanted: Let e(x) = x − tan−1 x be the error between tan−1 x
and x for small x. Then

e(0) = 0, e′(x) = 1− 1

1 + x2
=

x2

1 + x2
.

Since e′(x) > 0 if x > 0, it follows that e(x) > 0 for x > 0.
By the Intermediate Value Theorem, for each x > 0 there is some ξ ∈ (0, x) such that

e(x) = e′(ξ)(x− 0) =
ξ2

1 + ξ2
x < ξ2x < x3. (40)

This is good, because if x is small then x3 is much smaller again.
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From (39) and the definition of e(x),

lim
n→∞

tan−1 un = −3π

4
+ tan−1

1

2
+ tan−1

1

22
+
∑
n≥3

1

2n
+
∑
n≥3

(
tan−1

1

2n
− 1

2n

)
= −2.35619449 + 0.46364761 + 0.24497866 + .25−

∑
n≥3

e(2−n)

= −1.39756822−
∑
n≥3

e(2−n)

(41)

From (40), ∑
n≥3

e(2−n) ≤
∑
n≥3

1

23n
=

1

29
1

1− 1/8
= .00223 . . . .

So
lim
n→∞

tan−1 un = −1.3975± .0023.

In particular,
lim
n→∞

tan−1 un = −1.40 (42)

to two significant decimal places.

Tips & Tricks This question is a challenge!
• It follows from (39) that the sequence un defined recursively by (27) has the limit

un → tan

(
−3π

4
+
∞∑
1

tan−1
1

2n

)
.

involving tan and arctan = tan−1. This is certainly not obvious.
• The approach taken in part 2 is motivated by the “hint” to sketch x = tan y, the given form of

the limit, and knowing the formula for the tangent of the sum of two angles.
• The condition (34) necessary to obtain (33) was overlooked (surprisingly) by the examiners. For

this reason the given limit was incorrect.
• If you use the recursive calculator Recursive Function Calculator you will find u55 = · · · = u60

= −5.7398165269881 to 13 decimal places. In the calculator set

u0 = f(0) = 1, un = f(n) = (2n ∗ f(n− 1) + 1)/(2n − f(n− 1)).

Then use the Arctan(x) Calculator to get tan−1 un = −1.39830603 to 8 decimal places for
n = 55, . . . , 60.

As a check, note that this result from using the two calculators is in agreement with (42), hence
with (39) and so not with (28)!
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Question 8

The focus of a parabola is the point (h, k) and its directrix is y = d. Show that its equation can be
written in the form

2py = x2 + 2qx+ r

and express p, q, r in terms of h, k, d.
Write down the coordinates of the focus of the parabola

2py = x2 + 2qx.

The two parabolas

2py = x2 + 2qx

2p′x = y2 + 2q′y

have the same focus. Prove that their tangents at the origin are inclined at 45◦.
State this theorem in general terms (without reference to coordinates).

Solution.

Figure 8: Distance from (x, y) to the focal point (h, k) and to the directrix y = d are equal.

1 From the definition of focus and directrix, points (x, y) on the parabola are given by

(x− h)2 + (y − k)2 = (y − d)2,

see Figure (8). That is,
x2 − 2hx+ (h2 + k2 − d2) = 2(k − d)y.

This is in the form
2py = x2 + 2qx+ r, (43)

where
p = k − d, q = −h, r = h2 + k2 − d2. (44)

2 For the parabola P given by
2py = x2 + 2qx, (45)

we have r = 0 in (43). It follows from (44) that

d2 = h2 + k2 = q2 + (p+ d)2 = q2 + p2 + 2pd+ d2,
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and so

d = −p
2 + q2

2p
, p+ d =

p2 − q2

2p
.

Hence again from (44), the focus of P has coordinates

(h, k) = (−q, p+ d) =

(
−q, p

2 − q2

2p

)
. (46)

3 Let P ′ be the parabola
2p′x = y2 + 2q′y. (47)

By the previous argument with the roles of x and y switched, the focus of P ′ has coordinates

(h′, k′) =

(
p′2 − q′2

2p′
,−q′

)
. (48)

Note that x = 0, y = 0 satisfies (45) and (47), and so the origin (0, 0) lies on both P and P ′.

Differentiating both (45) and (47) with respect to x, at the origin we find
dy

dx
=
q

p
for P and

dy

dx
=
p′

q′

for P ′.

Figure 9: Parabolas with a common focus and orthogonal principal axes.

Let θ and θ′ be the angles that the two tangents at the origin make with the x-axis. Then tan θ =
q/p and tan θ′ = p′/q′. We want to show that θ − θ′ = ±π/4, or equivalently that tan(θ − θ′) = ±1.
But

tan(θ − θ′) =
tan θ − tan θ

1 + tan θ tan θ′
=

q/p− p′/q′

1 + p′q/(pq′)
=
qq′ − pp′

pq′ + p′q
.

So we want to show

pq′ + p′q = ±(qq′ − pp′),
equivalently, (pq′ + p′q)2 = (qq′ − pp′)2,

equivalently, 4pp′qq′ = (pp′)2 + (qq′)2 − (pq′)2 − (p′q)2. (49)

We are given that P and P ′ have the same focus, and so from (46) and (48),

− q =
p′2 − q′2

2p′
, −q′ = p2 − q2

2p
,

∴ − 2p′q = p′2 − q′2, −2pq′ = p2 − q2,
∴ 4pp′qq′ = (pp′)2 + (qq′)2 − (pq′)2 − (p′q)2.
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This establishes (49) and hence that the two tangents at the origin are inclined at 45◦.

4 The general result is that if two parabolas have orthogonal axes and a common focus, then at
each of the two points of intersection their tangents are inclined at 45◦ to each other.

Tips & Tricks The main point is to find an expression for the (tan of the) angle between the two
tangent vectors. See (49) and the discussion which precedes it. The ± in the first line of (49) gives a
hint we should square each side of the equality. Then we go back to (46) and (48) and think about
how we can use the information there.
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Question 9

In the diagram above, which represents a skew quadrilateral ABCD, the angles at B, C, D are
right angles. If H is the foot of the perpendicular from D to the plane ABC, prove that HC is parallel
to AB.

If the lengths of AB, BC, CD are respectively a, b, c, and CD makes an angle α with the plane
ABC, prove that

c = a cosα and AD2 = a2 + b2 − c2.

Find
(a) the volume of the tetrahedron ABCD,
(b) the perpendicular distance of A from the plane BCD,
(c) the length of the orthogonal projection of CD on to AB,
(d) an expression for the angle between the planes DCA, DCB.

Solution.

Choose cartesian coordinates with origin at B, x-axis in direction BC, y-axis in direction BA and
z-axis in the direction given by the right hand thumb rule corresponding to the x, y axes in that order.

Then

A = (0, a, 0), B = (0, 0, 0), C = (b, 0, 0), D = (b, c cosα, c sinα), H = (b, c cosα, 0) (50)

It follows that

−−→
BC = (b, 0, 0),

−−→
BA = (0, a, 0),

−−→
CD = (0, c cosα, c sinα),

−−→
AD = (b, c cosα− a, c sinα),

−−→
CH = (0, c cosα, 0),

−−→
HD = (0, c sinα, 0),

(51)

(i) HC is parallel to AB, since both are parallel to the y-axis from (51).
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(ii) Since the angle at D is a right angle,
−−→
AD ⊥

−−→
CD. Using (51),

0 =
−−→
AD ·

−−→
CD = c cosα(c cosα− a) + c2 sin2 α

= c2 − ac cosα = c(c− a cosα).

Since c 6= 0 it follows that c = a cosα.

(iii) From (51)

AD2 = b2 + (c cosα− a)2 + c2 sin2 α

= b2 + c2 − 2ac cosα+ a2

= a2 + b2 − c2 (using (ii))

(a) The volume of a tetrahedron is 1
3 times the area of any side times the perpendicular distance

from the opposite vertex to that side. (This is often expresssed as “1
3 times area of base times height”).

Hence

volume of tetrahedron =
1

3
× area(ABC)× length(HD)

=
1

3
· 1

2
ab · c sinα=

abc

6
sinα.

(b) Since the volume is also 1
3 times (the area of BCD) times (the perpendicular distance of A

from the plane BCD), it follows from (a) that

abc

6
sinα =

1

3
× 1

2
(bc)× (perp dist from A to BCD).

Hence the perpendicular distance from A to BCD is a sinα.

(c) The orthogonal projection of any point P onto AB is given by the y-coordinate of P . So
from (50) the orthogonal projections of C and D are (0, 0, 0) and (0, c cosα, 0) respectively.

Hence the length of the orthogonal projection of CD onto AB is c cosα.

(d) The angle between two planes is the (acute) angle between their normals.
From (51), the upward pointing (by the right hand thumb rule) normal to DCA is given by

−−→
DA×

−−→
DC =

∣∣∣∣∣∣
i j k
−b a− c cosα −c sinα
0 −c cosα −c sinα

∣∣∣∣∣∣
= i

∣∣∣∣a− c cosα −c sinα
−c cosα −c sinα

∣∣∣∣− j ∣∣∣∣−b −c sinα
0 −c sinα

∣∣∣∣+ k

∣∣∣∣−b a− c cosα
0 −c cosα

∣∣∣∣
= (−ac sinα,−bc sinα, bc cosα).

The squared length of this vector is

a2c2 sin2 α+ b2c2 sin2 α+ b2c2 cos2 α = a2c2 sin2 α+ b2c2

= c2(a2 sin2 α+ b2) = c2(a2 − a2 cos2 α+ b2) = c2(a2 + b2 − c2),

where we used (ii) for the last equality. Hence the upward pointing unit length vector perpendicular
to DCA is

1√
a2 + b2 − c2

(−a sinα,−b sinα, b cosα). (52)
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Similarly, the upward pointing normal to DCB is given by

−−→
CD ×

−−→
CB =

∣∣∣∣∣∣
i j k
0 c cosα c sinα
−b 0 0

∣∣∣∣∣∣ = (0,−bc sinα, bc cosα).

This has length bc and so the upward pointing unit length vector perpendicular to DCB is

(0,− sinα, cosα). (53)

The scalar product of the two unit length vectors in (52) and (53) is

b√
a2 + b2 − c2

,

and so the angle between them, and hence between the planes DCA and DCB, is

cos−1
b√

a2 + b2 − c2
.

Tips & Tricks Use Cartesian coordinates. Choose the origin and coordinate axes in a manner
which simplifies the relevant expessions as much as possible. Another possibility would be to choose
the origin at C instead of at B.
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Question 10

Prove that if the lines y = mx, and y = m′x harmonically separate y = nx, y = n′x, then

mm′ − 1

2
(m+m′)(n+ n′) + nn′ = 0.

y = mx, y = −mx are two given fixed lines, and H, (h, k), and H ′, (h′, k′) are two fixed points.
A point P moves so that the lines through P parallel to the fixed lines harmonically separate PH,

PH ′. Prove that the locus of P is a hyperbola, and find the coordinates of its centre, the equations
of its principal axes, and its eccentricity.

****************************************

An Aside The notion of “harmonic separation” is not standard terminology, and the corresponding
ideas are not now part of the high school curriculum, so here for context is the relevant background.

However, the solution of the question requires none of the following material other than an ap-
propriate choice of line L in order to compute the cross ratio of the lines y = mx, y = m′x and
y = nx, y = n′x. See Figure 11 and the proof of (55).

Figure 10: AC
BC

/
AD
BD = A′C′

B′C′

/
A′D′

B′D′ = sin∠APC
sin∠BPC

/
sin∠APD
sin∠BPD

Cross Ratio Suppose the points A,B,C,D lie on a straight line L, as in Figure 10. The cross ratio
(AB : CD) of the points A,B,C,D taken in that order is defined by

(AB : CD) =
AC

BC

/
AD

BD
. (54)

Here AC, BC, etc. are signed distances. For example, if the line L in Figure 10 is oriented from
left to right then AC is positive and BC is negative.

Proposition: Suppose P is a point not on L, L′ is a second straight line not containing P , and L′

crosses PA,PB,PC, PD at A′, B′, C ′D′ respectively. Then the corresponding cross ratios for L and
L′ are equal:

(AB : CD) = (A′B′ : C ′D′), i.e.
AC

BC

/
AD

BD
=
A′C ′

B′C ′

/
A′D′

B′D′
.

Moreover, both equal
sin∠APC
sin∠BPC

/
sin∠APD
sin∠BPD

.
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Proof. Let h be the perpendicular distance from P to L, see Figure 10. Then

area 4PAC =
1

2
h ·AC =

1

2
PC · PA sin∠APC

area 4PBC =
1

2
h ·BC =

1

2
PC · PB sin∠BPC

area 4PAD =
1

2
h ·AD =

1

2
PD · PA sin∠APD

area 4PBD =
1

2
h ·BD =

1

2
PD · PB sin∠BPD

(Here sin∠APC is positive, sin∠BPC is negative, etc.) Hence

(AB : CD) =
AC

BC

/
AD

BD

=
PA sin∠APC
PB sin∠BPC

/
PA sin∠APD
PB sin∠BPD

=
sin∠APC
sin∠BPC

/
sin∠APD
sin∠BPD

.

Therefore the cross ratio of the distances equals the “cross ratio” of the corresponding angles subtended
at P . But these angles are the same for L and L′. Hence (AB : CD) = (A′B′ : C ′D′).

Definition: If A,B,C,D are on a straight line not containing P , then the points {A,B} harmonically
separate the points {C,D}, and the lines {PA,PB} harmonically separate the lines {PC,PD}, if
(AB : CD) = −1.

Remarks
• By the previous Proposition, one can use any line crossing all 4 lines {PA,PB,PC, PD} and

the corresponding intersection points, in order to compute the relevant cross ratio.
• The significance of (AB : CD) = −1 is that the points C and D divide the line segment AB

internally and externally in the same ratio. The reason for −1 and not +1 is that in the +1 case
it follows that C = D.

****************************************

Solution to Question.

Figure 11: y = mx and y = m′x harmonically separate y = nx and y = n′x.
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See Figure 11. Consider the line x = 1. The lines y = mx, y = m′x, y = nx and y = n′x, cross this
line at the y-values m,m′, n, n′ respectively. Hence from (54) with A = (1,m), B = (1,m′), C = (1, n)
and D = (1, n′), and using the definition of “harmonically separate”,

(AB : CD) =
n−m
n−m′

/
n′ −m
n′ −m′

= −1

∴ (n−m)(n′ −m′) = −(n−m′)(n′ −m)

∴ 2mm′ + 2nn′ − (mn+mn′ +m′n+m′n′) = 0

∴ mm′ − 1

2
(m+m′)(n+ n′) + nn′ = 0. (55)

Figure 12: The lines through P with slope ±m harmonically separate PH and PH ′.

See Figure 12. Let P have coordinates (x, y). Denote the slopes of the lines PH from P to H, and
PH ′ from P to H ′, by

n =
k − y
h− x

, n′ =
k′ − y
h′ − x

,

respectively. The slopes of the lines parallel to the fixed planes are m and −m respectively.
We can apply (55) with m,m′, n, n′ there, replaced here by m,−m,n, n′ respectively. This is

justified since translation, in this case moving P to the origin, does not change the slopes of the four
lines through P . Note also from (54) that a pair of lines L1, L2 harmonically separate another pair
L3, L4 if and only if L3, L4 harmonically separate L1, L2.

This gives

−m2 +
k − y
h− x

× k′ − y
h′ − x

= 0

∴ m2(x− h)(x− h′) = (y − k)(y − k′)
∴ m2

(
x2 − x(h+ h′) + hh′

)
= y2 − y(k + k′) + kk′

∴ m2

((
x− h+ h′

2

)2

−
(
h+ h′

2

)2

+ hh′

)
=

(
y − k + k′

2

)2

−
(
k + k′

2

)2

+ kk′

∴ m2

(
x− h+ h′

2

)2

−
(
y − k + k′

2

)2

=
m2

4
(h− h′)2 − 1

4
(k − k′)2. (56)

This is an hyperbola with centre
(
(h + h′)/2, (k + k′)/2

)
, and principal axes x = 1

2(h + h′) and
y = 1

2(k + k′).

The eccentricity of the hyperbola in the standard form x2/a2 − y2/b2 = 1 is
√

1 + b2/a2. In order
to put (56) into standard form, let

γ =
m2

4
(h− h′)2 − 1

4
(k − k′)2.
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We assume γ 6= 0, since γ = 0 implies
k − k′

h− h′
= ±m, which implies HH ′ is parallel to one of the

two fixed lines, and so the locus of P is not properly defined.
If γ > 0, then on dividing both sides of (56) by γ and translating

(
(h + h′)/2, (k + k′)

)
to the

origin, the locus of P is in standard form with a =
√
γ m−1 and b =

√
γ. In this case the eccentricity is√

1 + b2/a2 =
√

1 +m2. Note that translating to the origin does not change the geometric properties
such as eccentricity.

If γ < 0 then, on dividing by −γ and again translating
(
(h + h′)/2, (k + k′)

)
to the origin, the

locus of P is y2/(−γ) −m2x2/(−γ) = 1. Switching x and y amounts to reflection in the line x = y

and so does not affect the eccentricity. So the eccentricity is

√
1 +

(−γ)m−2

−γ
=
√

1 +m−2 .

Tips & Tricks
• In order to derive (55) you need to know the meaning of “harmonically separates”. But then

the derivation is straightforward.
• The next point is that you should treat P as the origin in order to derive (56). This is legitimate

since the cross ratio is invariant under translation. Why?
• Finally, you need to separately consider the cases γ > 0 and γ < 0 in order to derive the

eccentricity.
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