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Part A
1. (i) Show thata + b - cis one factor of
a—b—c¢ 2a 2a
2b b—c—a 2b
2c 2c c—a—»b

and find the value of the determinant in its simplest form.

(ii) Show that the equations
z 4y +22=2
2r — y + 3z 2
50 — y + az = 6,

have a unique solution if @ is not equal to 8. Find all the
solutions if @ = 8.
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¢ t if d e positive integers and m n, | (i) Prove that the volume, V, the area of curved surface, S,
2. 0 Show-tant il M0, R S PO £ i and the radius of the base, r, of a right circular cone are

f cos mrcosnrds = 0. connected by the equation
. oVE = St — =%rf).

What i tue of this integral whenm = n? . !
tis the va el Show that the maximum volume for a given area of curved
. . : ; ; surface S, is
(i) Differentiate sin®-? 6 cos 8 and express the result in terms of gt
sin 6 only. ! - .
3k
Deduce that
/2 PR | 7 ' .
in"0ds = f' sin®-26d0 .
-L- - U 0 Part B
/2 . ;
Evaluate ju‘ 5in®0d6 . ] 6. Sketch, referred to the same axes, the curves
_ a
- _ Y@y e
3. Find the indefinite integrals _ e
_ Yy a |
® f S ' where a is a positive constant. The finite area between these
; 742 . curves is rotated .
(ii) fl Yzt &+ 2 dz, (1} about thcm
i (ii) about the y-axis.
e
(iii) f e dz. ' Find, in each case, the volume generated.
' il g . 7. () Ifz = 2 + iy, and
4, (i) Sketch the graph of the function ek, where k is a positive 7 — 1
constant. ' w = 5,
Find the equation of the tangent to the curve y = ek express w in the form u -+ iv where u and v are real.
which passes through the origin. Deduce that the equation Hgncc s}‘:ow that if | z | =+ l,then|{w—1] =1,
2%t = o (ii) Give a geometrical description of tht?l locus a{ the poi;t in
2 ts rdin: - nan, equal the Argand diagram representing the complex number z
11:50 ?’h:ls s?:h X Il;ei;}er.oo according as « 15 greawer t eq thich msteefes the eondinion
| lz+il=1z+3+4].
(ii) Show thatif | z | < 1, (iii) Find the greatest value of arg z, when
e — Lo & = as® + ba* + ..., ' [z-til=dee
(1 — 21 — 2)} (iv) Z,, Z, are the points in the Argand diagram representing
. the complex numbers z;, z,, Where
where @ and b are constants. Find the value of a. ) ..

Z3 = T 4 + 2- ‘
What is the locus of Z, as Z, describes the circle centre

5. (i) Show that the greatest value taken by the function ;
1 + 2z — e* is 0-386, to three decimal places. 4 and radius 3?
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8. For the curve given by the parametric equations
r = a(® — sin 68)
y = a(l — cos 9),
where a is a positive constant, find the equation of the

tangent at the point © and show that the normal at this
point has the equation

. 0 i) . B
xsmi—i—yocsi—aﬁsm—z.

P is the point ®# and Q is the point 8 4 A6 on the above
curve; R is the point of intersection of the normals at P
and Q. Show that as A6 tends to O the limiting position
of R is the point

{a(® + sin 8), a(cos 8 — 1) }.

9. (i) By considering a definite integral as the limit of a sum, show

that : ;
; 1 1 1 dr
,.1121.(?:+n+1"‘“*'2?t)_j;l+95
and give the value of this limit correct to three decimal
places. ;

(i) By means of a frechand sketch, show that if f{z) is a positive
function which is steadily decreasing as z increases, then

0 < if(r)—_[“lﬂx)dz < f(1).
r=1

Deduce that
0<1+%+...+-’-1-1——log(n+1)<1.

10. (i) Write down the first four terms and a general term of
the series for e*.

Show that

" S P el oy < 1
Z nl 32(::_1)!“‘2;!

1 1 1
and deduce the sum of the infinite series on the left.

(ii) State the comparison test for the convergence of a series of
positive terms. Discuss the convergence of the series
having gencral term—

1

. T
a) Un = =— sin —
@ n Vn
b) up = . , for positive values of z .
n(l + z*)
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