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(ix) In the given figure the quadrilaterals ABCD, CBEF are

Part A '
1. (i) In the triangle ABC, @ = 5 units, b — 7 units, cos C = 2 similar (with C, B, E, I' corresponding respectively to
Find as surds in their simplest forms ATy v A, B,C, D) If AB = 12 units, EB = 3 units, BC = &
(a) the length of the side c; e Ld.
(b) the area of the triangle (x) If the area of ABCD is 36 square units, find the area of the
- ; S ! polygon AEFCD.
(@ii) A is the point (1,3) and B is the point (7, —I).
Find 2. ABC is a friangle; A is the point (0, 4), B is the point (—5, —1)
(a) the coordinates of the mid-point of AB; and the orthocentre is the origin. Fin
(b) the equation of the right bisector of AB, (@) the coordinates of C;
(iii) Show that (1,1), (4,2) and (6, —4) are the vertices of a right- i (b) the area of the triangle;
(¢) the angle BAC.

angled triangle.
iv) Find a: i i : : A
(iv) Find as a surd, without using tables, the value of the product 3. D, D' are the fixed points (4,0), (—d,0) and P is a variable
point. Find the equations of, and describe geometrically,

sin 521° sin 74°,
(v) Find in radians all the values of = in the range 0 < ¢ < = ; the loci of the points P which satisfy the conditions
which satisfy the equation () PD = PIY;
sin 2z = sin PD’ 2
. = . (b) PD* + PD” = 447
(vi) Given that (¢c) tan PDD’ + tan PD'D = 1.
3cos(z + 45°) = cos (v — 45°)

find tan =. Part B
- ; ; Par
(vi) Write down the equation of the tangent to the parabola 4. (i) Prove that
& = at®, y = 2at at the point 1 = 3. I —cose
Joy ] , L — = tan®la
(viii) The focus of a parabola is the point (0, —4) and the directrix 1 hcoso e
By using this formula or otherwise find tan 157 as a surd in

1s the line y = 4. Write down the equation of the parabola
and draw a rough sketch.

(ix) and (x). D

its simplest form.
(i) If

show that
tan?) o« = sin(y — z) cosec(y -+ ).

cos « = tan z cot ¥y,

5, Find in degrees the values of & between 0° and 360° which
satisfy the equation
cotz = %sinz.

Sketch (not on graph paper) on the same diagram the
graphs of the functions cot # and % sin « for values of
in the range 0° to 360°, and state the ranges of values
(between 0° and 360°) for which

2sina > 3 cot =
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The diagram above represents part of the inside of two of the
walls (built vertically and at right angles) of a parking station.
In this diagram ALM represents the (horizontal) ground
floor, and the lines AB and BC represent the ramp climbing
up the two walls at a constant angle =, where tan « = 1.
If AL = 120 feet and LM = 60 feet, find
(a) the length of AC to the nearest foot;
(b) the angle ABC to the nearest minute.

7. A, B are the points of contact of the tangents from P, (zy,5,),
to the circle 2z + p* = a®
Find the equation of AB. .
A point Q lies on AB; C, D are the peints of contact of
the tangents from Q to the circle. Prove that
(a) P lies on CD;
(b) PA2 + QC? = PQ™

8. The points P, and P, on the parabola * = at?, y = 2af have
parameters £, and f, respectively. Find
(a) the equation of the normal at Py;
() the coordinates of the point of intersection, Q, of the
normals at P; and P;
(¢) the equation of the chord P,P, .
If the chord PP, of the parabola passes through the point
(—2a,0), prove that ¢z, = 2 and that the pomt Q lies on
the parabola.




