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1. SET THEORETIC MATERIAL

For a sequence (4,) of subsets of a set X define

(1) lim inf 4, = U ﬂAm, limsup A, = ﬂ UAm.
n>1 m=n n—eo n>1 m=n
Note
2) ﬂAm T li,r,r_l)iof,lfA"’ UAm llimsupA,, asn — oco.
mn m>n n—oo
In words,
3) x € liminfA, & x € A, eventually, x €limsupA, & x€ A, i.0.

n—oo n—oo

AN B DWW W NN N~

In particular, liminf A, is the smallest set detectible by tail events and limsup A, is the

largest.
Clearly,
4) (liminf A,)° = limsupA;, (limsupA,)° = liminf Aj,.
That is
%) =(A, eventually) & A{ i.0., —(A,i.0.) < A; eventually.
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2 JOHN E. HUTCHINSON

In terms of indicator or characteristic functions,

(6) Liminf, 4, = limninf 1a,, Liimsup, 4, = limsuply,,
n

where on the right of each equality we are taking the liminf and limsup of a sequence of
{0, 1}-valued functions. It follows from (3) and (6), since 14(x) is either O or 1, that

(7)  x€ A, eventually & ]_[ 14 (x) = 1 eventually & lim ]_[ 1, (0 =1,

mzn m=n

(8) x € Ayio. &= ) 14,(x) = oo

m

If X = Q is a sample space, the A, are interpreted as events and we write

9) Ay eventually & [ [ 14, = 1 eventually <= lim [ [ 14, = 1,
m=n m=n
(10) A, i.0. = Z 1, =oo.

2. WEAK Law oF LARGE NUMBERS

The word “weak” refers to convergence in probability, as opposed to the later “strong”
laws which give convergence a.e.

Theorem 2.1. Suppose (X,)),>1 are iid real R.V.s with mean u and finite variance. Then
forany e > 0,

X1+ + X,
limP( 1——,u 26):0.
n—oo n
Proof. By Chebysheyv,
2
n E(ZLXi-w) nBX, - pp?
P Xi— )| = < < — 0, asn— oo.
[ ;( ) ne] oy oy n— oo
The result follows. O

3. ZEro ONE Law

This follows trivially for i.0. events from the Borel-Cantelli Lemma, but is easy to show
directly as follows. (See [Lam66, pp 37-41].)

Let X, be R.V’s. The o-algebras B(X,, X,,+1,...) are decreasing as n — oo. The
intersection B, is called the tail field of the sequence.

It follows that 8, := B(X,,) is independent of B, for every n.

If the X,, are independent then the following says the tail field is trivial probabilistically.

Proposition 3.1 (Zero-One law). For independent events, any tail event has probability 0
orl.

Proof. B is independent of B, for any n, and so is independent of itself. Hence P(E)* =
P(E) for any tail event E, which gives the result. O

4. BoREL-CANTELLI LEMMA

(Partly from some now removed web notes [Che(09])

The main point in the following proposition for proving (1) is that Ef < co implies
f <ooas., where f=3,14,.

The main point for proving (2) is that ), P(A,) = oo implies P(ﬂkz" A;) = 0 (by
algebra and independence), i.e. P (Ui, Ax) = 1.

Proposition 4.1. For events A1, A, ...
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(1) >, PA,) <o = P(A, io.) =0 (= —A, eventually, a.s.),
(2) A, independent, ., P(A,;) = c0c = P(A, i.0.) = 1.
In particular, if A, are independent then P(A, i.0.) =10r0, (&= A, i.o., a.s.)

Proof. For (1) assume ), P(A,) < co. Hence

0> Y P(A)= Y Ely =EY 14,

The first equality is by the definitions and the second by the monotone convergence theo-
rem. This implies (but is not equivalent to) >, 14, < oo a.s.
But
Z 1, < ooas. & P(Z 1,, = ) =0 & P4, i0) = 0.

The first equivalence is by the definitions and the second by (8).

For (2) first note that if z, € [0,1] then 1 — #; < e”*. Hence ), P(A,) = oo implies
[Tisn (1 = P(Ag)) = 0 for all n. Hence
0 = lim ]_[ P(A}) = lim ]_[ Ely = limB 1—[ 1y; = Elim l_[ 1y; = Eliminf 1;.
k>n k>n k>n k>n
The second equality is by definitions, the third by independence and D.C.T., the fourth by
D.C.T,, the last since 1, is zero or 1.

Hence P(liminf A}) = 0, hence P(limsup A,) = 1 by (4), i.e. P(A4, i.0.) = 1 by (3).
Alternatively, rewriting the proof of (2) a little we have:

2 P(A,) = coimplies (as above) for all n that [ ], (1-P(Ay)) = 0,i.e. [z, P(A}) = 0.
By independence (see below to be more rigorous), one has for all n that P((N, A7) = 0,
i.e. P(Uisn Ax) = 1. Hence P(limsup A,) = 1, i.e. P(A, i.0.) = 1.

(More precisely for the independence step above, one has

PV 1) = m [Tt -
k>n k=n k=n

where the first equality is by having a decreasing sequence of sets and the second by inde-
pendence.) O

5. AppPLICATIONS OF BOREL-CANTELLI LEMMA
5.1. Convergence to zero a.s.

Proposition 5.1. Suppose (X,),> are real r.v.’s and Y, P(1X,| > €) < oo if € > 0. Then
X, (w) — 0 a.s.

Proof. By Borel-Cantelli with € = 1/k for any positive integer k, |X,,| < 1/k eventually a.s.
Hence X,, — 0 a.s. O

5.2. Geometric Random Variables. Consider a random sequence (X,),>; Where X,, €
{0, 1}.

Let n; be the kth occurrence of 1 for k > 1 and let ny = 0.

Let £, = ny — ng—; — 1 for k > 1. That is, ¢ is the length of the kth run of 0’s.

We want an a.s. eventual upper bound on the growth of £;,. Optimally, we want a se-
quence ¢, and a constant 8, such that

4
(11) lim sup = = 6.

k—o0 k

Step A: Suppose one can show

ZP(Zk > 0 ¢y) < 0.

k1
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Then by Borel-Cantelli,

¢
{; < 0 ¢y eventually a.s., = limsup ¢—k <fas.
k k
If this is true for every 8 > 6, then

. Oy
limsup — < 6 a.s.
ko P

Step C: Suppose one can show

Z P(ly = 6ogi) = o0,
k=1
and the ¢, are independent. Then by Borel-Cantelli,

¢
{; > Opy 1.0., a.s., = limsup qu > 6 a.s.
k k

Step B: Now suppose X, are iid with P(X,, = 0) = p. Note that the ¢ are iid and that
P((, = m) = p™ if m is a positive integer.
In order to obtain a lim sup estimate as in (11) we need to consider a suitable sequence

¢r and investigate for which 6
Ok ) 4
Pl— 20|~ ) p™
Z (¢k ;

k
converges, and for which 6 it diverges.

Motivated by
Z 1 =00 ife=0
— kv <o ife>0"

we consider the one parameter family of sequences (¢y)r>; defined by

1 ) (1+¢€)logk
ph = o Le. ¢k = Lo osk
ki+e log(1/p)
for € > 0. (The previous factor € corresponds to the term 1 + €.)
From Steps A and B,
. Uk . logk
limsup— =1 if¢y=——.
S %= Tog(1/p)
That is
. O 1
(12) lim su =1o (—)
P logk ¢ p

6. STRONG LAW OF LARGE NUMBERS (MOMENT RESTRICTION)

Theorem 6.1. Suppose (X,),>1 are iid real R.V.s with mean u and finite fourth moment.

Then
X+ + X,

n
Proof. Let E(X; — p)*> = o. By Chebyshev,

- U as.

4
" E(ZLXi-w)  nEX -p*+6(3)ot  cp2
P[ ;(Xi_li) zne]s o < e <=
Using the Borel-Cantelli lemma as in Proposition 5.1, the result follows. O

7. STRONG LAw OF LARGE NUMBERS (KOLMOGOROV)

In this section we drop the fourth moment requirement.
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7.1. Maximal Inequality; a.s. Convergence. We first prove the following “maximal”
inequality due to Kolmogorov. For this result it is helpful to think of §; = X; +--- + X;
as being the ith position in a type of random walk beginning from the origin. The theorem
gives an upper bound on the probability that the walk escapes (—a, a) within the first n
steps. The same result and proof applies in RY with B,(0) instead of (~a, a).

Note that the result reduces to a simple version of Chebyshev’s inequality in case n = 1.

Theorem 7.1. Let X1, ..., X, be independent with zero means and variances 0',%. Then for

any a > 0,
el 0'?
Plmax|X; + -+ Xj| > a]< ——.

1<i<n a?

Proof. LetS; =X +---+X,.
Let

A=1{S;¢(—a,a)forsomeic{l,...,n}}
Aj={S1,....S;1€(-a,a), S;¢(-a,a)}.

Note A = |J; A; and this is a disjoint union.
It follows

> o =B 2 ESIL) = ) E(S214)
J

i=1

= ZE((Sj+Sn ~$)%1a))
J

- Z (B(S31a) + B((Sw—S)* 1)) (S,1a, and S, - S are independent)
J

> a*P(A;) = a*P(A).
This is the required result. O

Theorem 7.2. Let (X,,),>1 be independent R.V.s with zero means and variances a',%. Sup-
pose 3, 0% < co. Then ¥, X,, converges a.s.

Proof. Suppose € > 0. From the previous theorem,

n 2 2
i=m O Dism O
P(maxle+~~-+X,~|Z€)S oL ZER
m<i<n 62 62
Since this is true for any n,
ZiZm 0—12
Plsup|X,, +---+ Xi| > €| < 5 — 0asm — oo.

; €
>m

Hence, almost surely, the sequence of partial sums eventually oscillates by at most €. Tak-
ing a sequence ¢ — 0, the sequence of partial sums converges a.s. O

7.2. Kronecker’s Lemma; SLLN for differing distributions. We first need
Theorem 7.3 (Kronecker’s Lemma).

a; aj+---+a,
— converges — —— — 0.
— ]
J

Proof. Let
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Then
n n
2= DI
J=1 J=1
=5 + 2(S2 - Sl) + 3(S3 - Sg) + -+ n(sn - Sn—l)
=—(s1+ 52+ -+ 8-1) + 1Sy,
Then
ay+---+a, S1+ Sy + -+ Sy
_— =, - .
n . n
We know s, — x, say. It follows easily that (s; + s, + - -+ + s,-1)/n — x. This gives the
result. o

A more general version of the above is in [Ash00, p236].
Of course the following applies to any finite mean u by considering X,, — .

Theorem 7.4 (Kolmogorov). Let (X,),>1 be independent R.V.’s with zero means and vari-
ances o%. Suppose Y., 0% /n* < co. Then

X+ +X

. n
lim =0 a.s.

n—oo n

Proof. By Theorem 7.2, Y, X,,/n converges a.s.
By Kronecker’s Lemma, (X; + -+ + X,,)/n — 0 a.s. O

7.3. SLLN for iid case.

Theorem 7.5 (Kolmogorov). Let (X,)n>1 be iid with zero mean. Then

X1+ +X
lim =L 0 as.
n—oo n
IFE(X\]) = oo then
. Xi+---+X,
limsup ——— = a.s.
n—oo n

Proof. In order to apply previous results we need a moment restriction. For this, define

_{X,, if 1X,] < n
=

. X, =Y, +7Z,.
0 if|X,|>n reon e

We next show that a.s., Z, = 0 for all sufficiently large n.

By Borel-Cantelli it is sufficient to show that ), P(Z, # 0) < oo, or equivalently that
>n P(X,| > n) < oco. For this let E, = {x : |x| > n} = [-n,n] and let P denote the
probability distribution for X;. Then

> pwi=m =Y, [1nware

nx1 n>1

= f DTk, (x) dP(x)

n>1
< flxl dP(x) = E(X;) < co.
In order to apply Theorem 7.4 to Y, first note

E(Y, — E(Y,))?* < E(Y,)* = f x> dP(x).

[-n.n]
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It follows that

var(Y,) 1
> 5 szn—z f[_ . 2 dP(x)

n>1 nx1

=2, 2 %f%(x)xzdP(x) where Fi= {x: £~ 1 <l <0}

n>1 1<<n

= Z Z n_12 f Ir, (x)x> dP(x)

=1 n>t

¢
I f Ir, (0l dP(x).
=1 n>t
3 1 f“ ¢
nz s t2 - f,

n>t

¥ <03 [neomape = ¢ [ wape = ceox < o

nx1 n >1

From Theorem 7.4 with y, = E(Y,,),
Yi+-+Y, i+t

But

SO

-0 a.s.
n n
But
My = f |x|dP(x) = E(X;) =0asn — oo.
[-n,n]
Hence
Yi+---4Y,
— >0 as.
n
Since eventually Z, = 0 a.s., it follows that
Z1+--+7Z
T T L0 as.
n
Thus
X1+ + X,
—— >0 as.
n

This completes the proof of the main part of the theorem.
For the last part, assume E(|X;[) = oco.
Suppose C > 0 and let
A, ={w:1X,| = Cn} CcQ
E,={x:|x| >Cn} CR.

Then P(A,) = P(E,), where the second P is the probability on R induced by X,,, and is
independent of 7.
Hence

D P4 = ) P(E)
=> f Ir, (x) dP(x)
= f D 1k, (x) dP(x)

~c! f |x|dP(x) = .
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Since the A, are independent, by Borel-Cantelli P(A, i.0.) = 1. That is, almost surely

X,
X > Ci.o.

Assume
Xt X
limsuyp ——— < o

n—00 n
on a set of w of positive measure. Then for some K > 0, there exists A C Q with positive
measure such that for w € A and for n > ny(w),

<X,+-~~+Xn X+ + X

-K , <K,
n n
and so by subtraction if w € A and n > ny,
Xl < ok,
n
Taking C = 3K gives a contradiction. O

8. RENEWAL THEOREM
We follow [Fal97, Chapter 7].

Definition 8.1. Suppose g : R — R is Borel measurable and y is a Borel probability
measure on [0, co). Then the corresponding renewal equation is

f(f)Zg(l)Jrj(; ft—y)duy) teR

ie. f=g+f*pu
or f(t) = g(t) + E f(t — X) where distX = pu.

13)

Remark 8.2. Think of 7 s time. Then the integral in (13) is a weighted average of f at times
earlier than 7 (and at 7 if u has an atom at 0). Moreover, g(f) can be thought of as an error
between f(¢) and this integral. O

Remark 8.3. Consider the renewal process defined by

(14) To=0, T,=X + +X,ifn>1.
where X, > 0 (usually > 0) are iid with distribution p.
Note that
(15) ul0,1] = P{X, <}, u"[0,4] = P{X; +---+ X, <t} =P{T, <1t}

(This corresponds to installing a light bulb at r = 0, and subsequently immediately upon
failure of the previous bulb. Then the T, are the installation or renewal times.)

The associated renewal counting process (N;)o is the number of renewals up to and
including time ¢. That is

(16) N, = cardin : T, <1} = > Tyr, <.
n>0

]

Remark 8.4. The renewal function and renewal measure (both denoted U) are defined by
U@ = UJ0,t] = EN().

This is the expected number of renewals up to time ¢, and U(A) is the expected number of
renewals in A. Moreover,

Ul0,11= ) Blir,zy = Y P{T, < 1} = u™[0,1].

n>0 n>0
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Nf Fs
61 -—
|
5+ 3
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| |
|
31 — |
| : |
2T r— | :
I | |
1+ i [ ' |
| 1 I I I
0 4 4 4 4 4 p ¢
0 7 T Ty=T T4
Ficure 1. Renewal process (from [Che(9])
X A A3 Xy ;
-—
Ficure 2. Renewal process (from [Che09])
That is
(17) U= Z ", where 1 = .
n>0
Note Ty = 0. This also follows from Proposition 8.6.
Fort >0,

U =E,EN® | X1 =)
=E,(1+U(t-y)) (since the process starts again at X;)

ﬂ+fthwm

That is, U satisfies the renewal equation (13) with g = X9 c0)-
It follows from the renewal theorem that in the non-arithmentic case, U is approximately
a multiple of Lebesgue measure L'. More precisely,

Proposition 8.5. If u is non-arithmetic, then
Ult,t+h] > A 'hast — oo,
for every h > 0. Moreover, if u is T-arithmetic then the same is true provided h is a multiple
of 1.
Proof. Let g = X0, h] in the Renewal Theorem 8.10. O

The renewal equation, under quite general conditions, has a unique solution given by an
infinite series expansion.
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More precisely, we make the following assumptions *** these are only needed for the
renewal theorem. The following proposition is true under weaker hypotheses, sufficient to
include the case with U(¢) and g(f) as above ***

(1) 1:=EX) = [} tdu(t) < oo, where dist X = ;

(2) p is not concentrated at O;

3) 1g(®)| < ce~ for some a > 0, and g has a discrete set of discontinuities (more
generally, g is “directly Riemann integrable”).

Note that condition (3) on g is not satisfied in in Example 8.3.
Let F be the set of Borel measurable f : R — R such that f(r) —» O ast — —oo and f
is bounded on each (-0, a].

Proposition 8.6 (Solution of the renewal equation). Under the previous hypotheses ***
and more generally as noted before *** there is a unique solution of the renewal equation
given by

f=) gxu"=gxU,

n=0
a8) ie. f(t) = ZEg(t—(Xl +eo X))
n>0
=Zf f 8t =y1 = =yu)du(yr)...duly,).
n>0 0 0

Moreover, f is bounded, and if g is continuous then f is uniformly continuous.

Proof. The formal idea is that if f(£) = X5 (g * ©™)(¢) then
FO =80+ ) (g ™) * (1)

n=0

=g+ f D (@)= ) duy)

n=0

=mnjﬁwwww

The justification for the various steps and for the regularity results follow from the hy-
potheses. O

For the Renewal Theorem 8.10 we will need to consider two cases for u.

Definition 8.7. The measure u is T-arithmetic if
E:=sptucla+tk:keN}
for some a € R (take a € [0, 7) w.l.o.g.), and 7 is the greatest such positive number.

Otherwise, u is non-arithmetic.

Remark 8.8. If u is T-arithmetic and f satisfies the renewal equation, then it is clear from
the first form of (13) that, for each fixed t € R, this gives a relationship involving only

f(t—kt), g(t), ulkr}, fork € Ny.

Similarly, if f satisfies the renewal equation, then it is clear from the second form of (18)
that, for each fixed t € R, this gives a relationship involving only

f(@), g(t —krt), ulkr}, fork e Ny.

Remark 8.9. The renewal theorem below refers to the limit behaviour of the solution f(z)
to the renewal equation as ¢t — oco. Recall f(r) = Y50 Eg(t — (X1 + - - - + X,,)).

Since f = g * U and U is asymptotically L' normalised by the mean of yu, (at least in
the non-arithmetic case) we expect that asymptotically f is the integral of g normalised by
the mean of u. More carefully, we argue as follows.
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Non-arithmetic case. In order to find an approximation to f(¢) for large ¢, approximate
g by a sum of functions of the form @X|,;. First suppose g is itself a summand of this
form, t >> b and b — a << A. The probability that t — (X; + - - - + X)) € [a, b] for some n is
approximately [b—a]/A, and this is the same for the probability that 7—(X; +- - -+X,,) € [a, D]
for exactly one n. It follows that f(f) = a[b — a]/A. By summing, for general g it follows

that f(f) ~ A7 fg(x) dx.

Arithmetic case. In order to find an approximation to f(¢) for large ¢, it follows from
Remark 8.8 that the relevant arguments for g are t— k7 for k € Ny. First suppose g(t—k'7) =
a for some k' and that otherwise g(¢ — k7) = 0, and suppose ¢ >> ¢ — k’t. The probability
that t — (X; + --- + X;;,) = t — k't for some (and hence exactly one) n is approximately
1/Ad. It follows that f(f) ~ A-'a. By summing, for general g, it follows that f(f) ~

At Y 8+ 7). ]

Theorem 8.10 (Renewal theorem). Suppose the hypotheses as for Proposition 8.6 and that
f € F is the solution of the renewal theorem. If u is non-arithmetic then

(19) lim f(x) = At f g(r)dt.

If u is T-arithmetic then for ty € [0, T),

oo

(20) lim flo +kny =27 37 gl + o).

Jj=—c0
Proof. Method 1. This makes rigorous the informal argument in Remark 8.9 by using
acoupling argument.

Method 2. We outline the non arithmetic case.
Step (a). From (13) one gets

X 0 t<0
I _gyd = f fOux=ndt = (f*y)(x) where y(r) = {,u[t, ©) 120

Step (b). Hence
G~ [ed asxo e,
(Think of (f * ¥)(x) as a weighted average of values of f at points y < x.)

Step (c). By Wiener’s theorem, since we can show J(u) #0,
(f *P)(x) — % fg(t)dt as x — oo,

for any ¢ € L'(R).

We can check that f Y= A
Step (d). Setting ¢ to be an approximation to the Dirac §-function and using the uniform
continuity of f, it follows that

f(x)*ﬁflfg(t)dt as x — oo,

Step (e). If g has a discrete set of discontinuities, then we approximate g by continuous
functions.

(Arithmetic case?) ]

We use the following, which is just a restatement of the previous theorem for y with
finite discrete support.
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Corollary 8.11. Supposem > 2, t1,...,t,, > 0 are “times”, and p;, ..., p, are probabil-
ities, so that ),; p; = 1. Let g be as before Proposition 8.6 and let f satisfy the renewal
equation

2 f(@) =g+ Z pif (t = 0)i).
Let A = 3 pit;.
If{t1,...,ty,} is non-arithmetic then
tim g0 = 4" [ gt a.
If{t, ..., t,} is T-arithmetic then

: _ -1
lim (o +kr) = 4 k_z g(to + k1),

forall ty € [0, 1).
9. CJM PROCESSES

9.1. Notation and Non-probabilistic aspects. Consider a population of individuals with
an initial ancestor denoted by ¢. This individual will have a finite number of children, each
of these will have a finite number of children, etc. Each individual apart from the initial
ancestor has exactly one parent and there is no notion of breeding in this model.

(Later we will impose a notion of absolute time, and of birth and death times.)

The set of all individuals (alive or dead) is naturally represented by a tree T C | oo NF,
where N° = {0} and N¥ is the set of finite sequences i = iy ... of positive integers. We
use the standard notations || for the length of , iy for truncation and ij for concatentation.

Motivated by the above we require:

(1) 0eT;

(2) i € T implies (the unique kth generation ancestor) il € T for k < |i[;

(3) il,...,iN* € T and i(N* +1),i(N* +2),-- - ¢ T, where N' is the number of children
of i.

Associated with each i € T is a life-story U’ = (L', &) where

(1) L € [0, ) is the lifetime of i

(2) & [0, c0) = Ny is a bounded non-decreasing right-continuous function, and £ (z)
is the number of births from i up to and including time z. We assume £(0) = 0.

The jumps in & determine age #( ;) of i at the birth of the jth child of i. The number of
births at age ¢ is the size of the jump at ¢. The total number of births for i is denoted N’.
The ages at time of berth satisfy

(22) 0<r(l)<Ff@)<---<Fd(N) < L.
More precisely, define
(23) N = £[0,00), £(j):=inf{t: &@) = j).
We also w.l.o.g. make the assumption
(24) F(N) < L.
Then (22) follows, as does
(25) £ = max {j: £(j) < 1}.

See Figure 1, where a different notation is used.

1Ny is the set of natural numbers together with 0.
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In the usual way, & is the distribution function for a measure, also denoted by &'. Thus
s, =60 =), €0 =¢0.1.
The measure &' is a sum of Dirac measures, one for each birth and counted with multiplic-
ities. More precisely,

Ni
(26) &= Z 51
j=1

The time at the birth of an individual is defined recursively by
27) o0=0, oj=0i+1L()).

Thus if we attach the time 7 () to the edge from j to jk then the time at birth of i is the sum
of the times along all edges in i; ... ;. That is

(28) o =26 + () + -+ () = Z fierGyiflil=n > 1.
k=1

Example 9.1. We use standard notation.

Consider a fractal set indexed by a tree T in the usual manner. That is, the n-cell A; is
replaced by a scaled copy of F(Go) = UL, fi(Go), where F' = {f{,..., fi;} is an IFS of
similarities in R* with contraction ratios f’i > 2 fjw.

In this case the ages of i at times of giving birth and at death are defined by

f(j)=logl/€,, L'=logl/e,,.
In particular, from (28) by setting
- \—1 . -
dG)y=log(£) . € =exp(-£())).
it follows that the time at birth of the cell i is
(29) oi=logl;', e i =exp(-0y),

where as usual ¢; = []_, é’fi"""’“ if |i| = n.
Note for future reference that if F':= {f,... f,,} and ¢; := log t’;l then

(30) D=1 Y™ (i.e. f e—‘”g(dt)) =1,
- - 0
J J

and more generally

(31) Zf;?:h:»Ze—Wf:l.

ieA ieA
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