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1. Set Theoretic material

For a sequence (An) of subsets of a set X define

(1) lim inf
n→∞

An =
⋃
n≥1

⋂
m≥n

Am, lim sup
n→∞

An =
⋂
n≥1

⋃
m≥n

Am.

Note

(2)
⋂
m≥n

Am ↑ lim inf
n→∞

An,
⋃
m≥n

Am ↓ lim sup
n→∞

An, as n→ ∞.

In words,

(3) x ∈ lim inf
n→∞

An ⇐⇒ x ∈ An eventually, x ∈ lim sup
n→∞

An ⇐⇒ x ∈ An i.o.

In particular, lim inf An is the smallest set detectible by tail events and lim sup An is the
largest.

Clearly,

(4) (lim inf An)c = lim sup Ac
n, (lim sup An)c = lim inf Ac

n.

That is

(5) ¬(An eventually)⇐⇒ Ac
n i.o., ¬(An i.o.)⇐⇒ Ac

n eventually.
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In terms of indicator or characteristic functions,

(6) 1lim infn An = lim inf
n

1An , 1lim supn An = lim sup
n

1An ,

where on the right of each equality we are taking the liminf and limsup of a sequence of
{0, 1}-valued functions. It follows from (3) and (6), since 1A(x) is either 0 or 1, that

x ∈ An eventually⇐⇒
∏
m≥n

1Am (x) = 1 eventually⇐⇒ lim
n

∏
m≥n

1Am (x) = 1,(7)

x ∈ An i.o.⇐⇒
∑

n

1An (x) = ∞.(8)

If X = Ω is a sample space, the An are interpreted as events and we write

An eventually⇐⇒
∏
m≥n

1Am = 1 eventually⇐⇒ lim
n

∏
m≥n

1Am = 1,(9)

An i.o.⇐⇒
∑

n

1An = ∞.(10)

2. Weak Law of Large Numbers

The word “weak” refers to convergence in probability, as opposed to the later “strong”
laws which give convergence a.e.

Theorem 2.1. Suppose (Xn)n≥1 are iid real R.V.’s with mean µ and finite variance. Then
for any ε > 0,

lim
n→∞

P
( ∣∣∣∣∣X1 + · · · + Xn

n
− µ

∣∣∣∣∣ ≥ ε) = 0.

Proof. By Chebyshev,

P

∣∣∣∣∣ n∑
i=1

(Xi − µ)
∣∣∣∣∣ ≥ nε

 ≤ E
(∑n

i=1(Xi − µ)
)2

n2ε2 ≤
nE(X1 − µ)2

n2ε2 → 0, as n→ ∞.

The result follows. �

3. Zero One Law

This follows trivially for i.o. events from the Borel-Cantelli Lemma, but is easy to show
directly as follows. (See [Lam66, pp 37–41].)

Let Xn be R.V.’s. The σ-algebras B(Xn, Xn+1, . . . ) are decreasing as n → ∞. The
intersection B∞ is called the tail field of the sequence.

It follows that Bn := B(Xn) is independent of B∞ for every n.
If the Xn are independent then the following says the tail field is trivial probabilistically.

Proposition 3.1 (Zero-One law). For independent events, any tail event has probability 0
or 1.

Proof. B∞ is independent of Bn for any n, and so is independent of itself. Hence P(E)2 =

P(E) for any tail event E, which gives the result. �

4. Borel-Cantelli Lemma

(Partly from some now removed web notes [Che09])
The main point in the following proposition for proving (1) is that E f < ∞ implies

f < ∞ a.s., where f =
∑

n IAn .
The main point for proving (2) is that

∑
n P(An) = ∞ implies P

(⋂
k≥n Ac

k

)
= 0 (by

algebra and independence), i.e. P
(⋃

k≥n Ak
)

= 1.

Proposition 4.1. For events A1, A2, . . .
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(1)
∑

n P(An) < ∞ =⇒ P(An i.o.) = 0 (⇐⇒ ¬An eventually, a.s.),
(2) An independent,

∑
n P(An) = ∞ =⇒ P(An i.o.) = 1.

In particular, if An are independent then P(An i.o.) = 1 or 0, (⇐⇒ An i.o., a.s.)

Proof. For (1) assume
∑

n P(An) < ∞. Hence

∞ >
∑

n

P(An) =
∑

n

E1An = E
∑

n

1An ,

The first equality is by the definitions and the second by the monotone convergence theo-
rem. This implies (but is not equivalent to)

∑
n 1An < ∞ a.s.

But ∑
n

1An < ∞ a.s.⇐⇒ P
(∑

n

1An = ∞
)

= 0⇐⇒ P(An i.o.) = 0.

The first equivalence is by the definitions and the second by (8).

For (2) first note that if tk ∈ [0, 1] then 1 − tk ≤ e−tk . Hence
∑

n P(An) = ∞ implies∏
k≥n

(
1 − P(Ak)

)
= 0 for all n. Hence

0 = lim
n

∏
k≥n

P(Ac
k) = lim

n

∏
k≥n

E1Ac
k

= lim
n
E

∏
k≥n

1Ac
k

= E lim
n

∏
k≥n

1Ac
k

= E lim inf
n

1Ac
n .

The second equality is by definitions, the third by independence and D.C.T., the fourth by
D.C.T., the last since 1Ac

n is zero or 1.
Hence P(lim inf Ac

n) = 0, hence P(lim sup An) = 1 by (4), i.e. P(An i.o.) = 1 by (3).

Alternatively, rewriting the proof of (2) a little we have:∑
n P(An) = ∞ implies (as above) for all n that

∏
k≥n

(
1−P(Ak)

)
= 0, i.e.

∏
k≥n P

(
Ac

k
)

= 0.
By independence (see below to be more rigorous), one has for all n that P

(⋂
k≥n Ac

k
)

= 0,
i.e. P

(⋃
k≥n Ak

)
= 1. Hence P(lim sup An) = 1, i.e. P(An i.o.) = 1.

(More precisely for the independence step above, one has

P

⋂
k≥n

Ac
k

 = lim
m→∞

P

 m⋂
k=n

Ac
k

 = lim
m→∞

m∏
k=n

P
(
Ac

k

)
= 0,

where the first equality is by having a decreasing sequence of sets and the second by inde-
pendence.) �

5. Applications of Borel-Cantelli Lemma

5.1. Convergence to zero a.s.

Proposition 5.1. Suppose (Xn)n≥1 are real r.v.’s and
∑

n P
(
|Xn| > ε

)
< ∞ if ε > 0. Then

Xn(ω)→ 0 a.s.

Proof. By Borel-Cantelli with ε = 1/k for any positive integer k, |Xn| ≤ 1/k eventually a.s.
Hence Xn → 0 a.s. �

5.2. Geometric Random Variables. Consider a random sequence (Xn)n≥1 where Xn ∈

{0, 1}.
Let nk be the kth occurrence of 1 for k ≥ 1 and let n0 = 0.
Let `k = nk − nk−1 − 1 for k ≥ 1. That is, `k is the length of the kth run of 0’s.

We want an a.s. eventual upper bound on the growth of `k. Optimally, we want a se-
quence φk and a constant θ0 such that

(11) lim sup
k→∞

`k

φk
= θ0.

Step A: Suppose one can show ∑
k≥1

P(`k > θ φk) < ∞.
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Then by Borel-Cantelli,

`k ≤ θ φk eventually a.s., =⇒ lim sup
k

`k

φk
≤ θ a.s.

If this is true for every θ > θ0 then

lim sup
k

`k

φk
≤ θ0 a.s.

Step C: Suppose one can show ∑
k≥1

P(`k ≥ θ0φk) = ∞,

and the `k are independent. Then by Borel-Cantelli,

`k ≥ θ0φk i.o., a.s., =⇒ lim sup
k

`k

φk
≥ θ0 a.s.

Step B: Now suppose Xn are iid with P(Xn = 0) = p. Note that the `k are iid and that
P(`k ≥ m) = pm if m is a positive integer.

In order to obtain a lim sup estimate as in (11) we need to consider a suitable sequence
φk and investigate for which θ ∑

k

P
(
`k

φk
≥ θ

)
∼

∑
k

pθφk

converges, and for which θ it diverges.
Motivated by ∑

k

1
k1+ε

 = ∞ if ε = 0
< ∞ if ε > 0

,

we consider the one parameter family of sequences (φk)k≥1 defined by

pφk =
1

k1+ε
, i.e. φk =

(1 + ε) log k
log(1/p)

for ε ≥ 0. (The previous factor θ corresponds to the term 1 + ε.)

From Steps A and B,

lim sup
k

`k

φk
= 1 if φk =

log k
log(1/p)

.

That is

(12) lim sup
k

`k

log k
= log

(
1
p

)
.

6. Strong Law of Large Numbers (moment restriction)

Theorem 6.1. Suppose (Xn)n≥1 are iid real R.V.’s with mean µ and finite fourth moment.
Then

X1 + · · · + Xn

n
→ µ a.s.

Proof. Let E(X1 − µ)2 = σ2. By Chebyshev,

P

∣∣∣∣∣ n∑
i=1

(Xi − µ)
∣∣∣∣∣ ≥ nε

 ≤ E
(∑n

i=1(Xi − µ)
)4

n4ε4 ≤
nE(X1 − µ)4 + 6

(
n
2

)
σ4

n4ε4 ≤
Cn2

n4ε4 .

Using the Borel-Cantelli lemma as in Proposition 5.1, the result follows. �

7. Strong Law of Large Numbers (Kolmogorov)

In this section we drop the fourth moment requirement.
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7.1. Maximal Inequality; a.s. Convergence. We first prove the following “maximal”
inequality due to Kolmogorov. For this result it is helpful to think of S i = X1 + · · · + Xi

as being the ith position in a type of random walk beginning from the origin. The theorem
gives an upper bound on the probability that the walk escapes (−a, a) within the first n
steps. The same result and proof applies in Rd with Ba(0) instead of (−a, a).

Note that the result reduces to a simple version of Chebyshev’s inequality in case n = 1.

Theorem 7.1. Let X1, . . . , Xn be independent with zero means and variances σ2
n. Then for

any a > 0,

P
(
max
1≤i≤n

|X1 + · · · + Xi| ≥ a
)
≤

∑n
i=1 σ

2
i

a2 .

Proof. Let S i = X1 + · · · + Xi.
Let

A =
{

S i < (−a, a) for some i ∈ {1, . . . , n}
}

A j =
{

S 1, . . . , S j−1 ∈ (−a, a), S j < (−a, a)
}
.

Note A =
⋃

j A j and this is a disjoint union.
It follows

n∑
i=1

σ2
i = E(S 2

n) ≥ E(S 2
n IA) =

∑
j

E(S 2
n IA j )

=
∑

j

E
(
(S j + S n − S j)2 IA j

)
=

∑
j

(
E
(
S 2

j IA j

)
+ E

(
(S n − S j)2 IA j

))
(S j IA j and S n − S j are independent)

≥ a2P(A j) = a2P(A).

This is the required result. �

Theorem 7.2. Let (Xn)n≥1 be independent R.V.’s with zero means and variances σ2
n. Sup-

pose
∑

n σ
2
n < ∞. Then

∑
n Xn converges a.s.

Proof. Suppose ε > 0. From the previous theorem,

P
(
max
m<i≤n

|Xm + · · · + Xi| ≥ ε
)
≤

∑n
i=m σ

2
i

ε2 ≤

∑
i≥m σ

2
i

ε2 .

Since this is true for any n,

P
(
sup
i>m
|Xm + · · · + Xi| ≥ ε

)
≤

∑
i≥m σ

2
i

ε2 → 0 as m→ ∞.

Hence, almost surely, the sequence of partial sums eventually oscillates by at most ε. Tak-
ing a sequence εk → 0, the sequence of partial sums converges a.s. �

7.2. Kronecker’s Lemma; SLLN for differing distributions. We first need

Theorem 7.3 (Kronecker’s Lemma).∑
j

a j

j
converges =⇒

a1 + · · · + an

n
→ 0.

Proof. Let

sn =

n∑
j=1

a j

j
.
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Then
n∑

j=1

a j =

n∑
j=1

js j

= s1 + 2(s2 − s1) + 3(s3 − s2) + · · · + n(sn − sn−1)

= −
(
s1 + s2 + · · · + sn−1

)
+ nsn

Then
a1 + · · · + an

n
= sn −

s1 + s2 + · · · + sn−1

n
.

We know sn → x, say. It follows easily that (s1 + s2 + · · · + sn−1)/n → x. This gives the
result. �

A more general version of the above is in [Ash00, p236].
Of course the following applies to any finite mean µ by considering Xn − µ.

Theorem 7.4 (Kolmogorov). Let (Xn)n≥1 be independent R.V.’s with zero means and vari-
ances σ2

n. Suppose
∑

n σ
2
n/n

2 < ∞. Then

lim
n→∞

X1 + · · · + Xn

n
= 0 a.s.

Proof. By Theorem 7.2,
∑

n Xn/n converges a.s.
By Kronecker’s Lemma, (X1 + · · · + Xn)/n→ 0 a.s. �

7.3. SLLN for iid case.

Theorem 7.5 (Kolmogorov). Let (Xn)n≥1 be iid with zero mean. Then

lim
n→∞

X1 + · · · + Xn

n
= 0 a.s.

If E(|X1|) = ∞ then

lim sup
n→∞

X1 + · · · + Xn

n
= ∞ a.s.

Proof. In order to apply previous results we need a moment restriction. For this, define

Yn =

Xn if |Xn| ≤ n
0 if |Xn| > n

, Xn = Yn + Zn.

We next show that a.s., Zn = 0 for all sufficiently large n.
By Borel-Cantelli it is sufficient to show that

∑
n P(Zn , 0) < ∞, or equivalently that∑

n P(|Xn| > n) < ∞. For this let En = {x : |x| > n} = [−n, n]c and let P denote the
probability distribution for X1. Then∑

n≥1

P(|Xn| > n) =
∑
n≥1

∫
IEn (x) dP(x)

=

∫ ∑
n≥1

IEn (x) dP(x)

≤

∫
|x| dP(x) = E(X1) < ∞.

In order to apply Theorem 7.4 to Yn first note

E(Yn − E(Yn))2 ≤ E(Yn)2 =

∫
[−n,n]

x2 dP(x).
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It follows that∑
n≥1

var(Yn)
n2 ≤

∑
n≥1

1
n2

∫
[−n,n]

x2 dP(x)

=
∑
n≥1

∑
1≤`≤n

1
n2

∫
IF`

(x)x2 dP(x) where F` := {x : ` − 1 < |x| ≤ `}

=
∑
`≥1

∑
n≥`

1
n2

∫
IF`

(x)x2 dP(x)

≤
∑
`≥1

∑
n≥`

`

n2

∫
IF`

(x)|x| dP(x).

But ∑
n≥`

1
n2 ∼

∫ ∞

`

dt
t2 ≤

c
`
,

so ∑
n≥1

var(Yn)
n2 ≤ c

∑
`≥1

∫
IF`

(x)|x| dP(x) = c
∫
|x| dP(x) = cE(X1) < ∞.

From Theorem 7.4 with µn = E(Yn),
Y1 + · · · + Yn

n
−
µ1 + · · · + µn

n
→ 0 a.s.

But
µn =

∫
[−n,n]

|x| dP(x)→ E(X1) = 0 as n→ ∞.

Hence
Y1 + · · · + Yn

n
→ 0 a.s.

Since eventually Zn = 0 a.s., it follows that
Z1 + · · · + Zn

n
→ 0 a.s.

Thus
X1 + · · · + Xn

n
→ 0 a.s.

This completes the proof of the main part of the theorem.

For the last part, assume E(|X1|) = ∞.
Suppose C > 0 and let

An = {ω : |Xn| ≥ Cn} ⊂ Ω

En = {x : |x| ≥ Cn} ⊂ R.

Then P(An) = P(En), where the second P is the probability on R induced by Xn, and is
independent of n.

Hence ∑
n

P(An) =
∑

n

P(En)

=
∑

n

∫
IEn (x) dP(x)

=

∫ ∑
n

IEn (x) dP(x)

∼ c−1
∫
|x| dP(x) = ∞.
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Since the An are independent, by Borel-Cantelli P(An i.o.) = 1. That is, almost surely
|Xn|

n
≥ C i.o.

Assume
lim sup

n→∞

|X1 + · · · + Xn|

n
< ∞

on a set of ω of positive measure. Then for some K > 0, there exists A ⊂ Ω with positive
measure such that for ω ∈ A and for n ≥ n0(ω),

−K ≤
X1 + · · · + Xn

n
,

X1 + · · · + Xn−1

n
≤ K,

and so by subtraction if ω ∈ A and n ≥ n0,
|Xn|

n
≤ 2K.

Taking C = 3K gives a contradiction. �

8. Renewal Theorem

We follow [Fal97, Chapter 7].

Definition 8.1. Suppose g : R → R is Borel measurable and µ is a Borel probability
measure on [0,∞). Then the corresponding renewal equation is

(13)
f (t) = g(t) +

∫ ∞

0
f (t − y) dµ(y) t ∈ R

i.e. f = g + f ∗ µ

or f (t) = g(t) + E f (t − X) where dist X = µ.

Remark 8.2. Think of t s time. Then the integral in (13) is a weighted average of f at times
earlier than t (and at t if µ has an atom at 0). Moreover, g(t) can be thought of as an error
between f (t) and this integral. �

Remark 8.3. Consider the renewal process defined by

(14) T0 = 0, Tn = X1 + · · · + Xn if n ≥ 1.

where Xn ≥ 0 (usually > 0) are iid with distribution µ.
Note that

(15) µ[0, t] = P{X1 ≤ t}, µ∗n[0, t] = P{X1 + · · · + Xn ≤ t} = P{Tn ≤ t}.

(This corresponds to installing a light bulb at t = 0, and subsequently immediately upon
failure of the previous bulb. Then the Tn are the installation or renewal times.)

The associated renewal counting process (Nt)t≥0 is the number of renewals up to and
including time t. That is

(16) Nt = card{n : Tn ≤ t} =
∑
n≥0

I{Tn≤t}.

�

Remark 8.4. The renewal function and renewal measure (both denoted U) are defined by

U(t) = U[0, t] = EN(t).

This is the expected number of renewals up to time t, and U(A) is the expected number of
renewals in A. Moreover,

U[0, t] =
∑
n≥0

E I{Tn≤t} =
∑
n≥0

P{Tn ≤ t} = µ∗n[0, t].
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Figure 1. Renewal process (from [Che09])

Figure 2. Renewal process (from [Che09])

That is

(17) U =
∑
n≥0

µ∗n, where µ∗0 = δ0.

Note T0 = 0. This also follows from Proposition 8.6.
For t ≥ 0,

U(t) = Ey E (N(t) | X1 = y)

= Ey
(
1 + U(t − y)

)
(since the process starts again at X1)

= 1 +

∫
U(t − y) dµ(y).

That is, U satisfies the renewal equation (13) with g = X[0,∞).
It follows from the renewal theorem that in the non-arithmentic case, U is approximately

a multiple of Lebesgue measure L1. More precisely,

Proposition 8.5. If µ is non-arithmetic, then

U[t, t + h]→ λ−1h as t → ∞,

for every h > 0. Moreover, if µ is τ-arithmetic then the same is true provided h is a multiple
of τ.

Proof. Let g = X[0, h] in the Renewal Theorem 8.10. �

The renewal equation, under quite general conditions, has a unique solution given by an
infinite series expansion.
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More precisely, we make the following assumptions *** these are only needed for the
renewal theorem. The following proposition is true under weaker hypotheses, sufficient to
include the case with U(t) and g(t) as above ***

(1) λ := E (X) =
∫ ∞

0 t dµ(t) < ∞, where dist X = µ;
(2) µ is not concentrated at 0;
(3) |g(t)| ≤ ce−α|t| for some α > 0, and g has a discrete set of discontinuities (more

generally, g is “directly Riemann integrable”).
Note that condition (3) on g is not satisfied in in Example 8.3.

Let F be the set of Borel measurable f : R → R such that f (t) → 0 as t → −∞ and f
is bounded on each (−∞, a].

Proposition 8.6 (Solution of the renewal equation). Under the previous hypotheses ***
and more generally as noted before *** there is a unique solution of the renewal equation
given by

(18)

f =
∑
n≥0

g ∗ µ∗n = g ∗ U,

i.e. f (t) =
∑
n≥0

E g
(
t − (X1 + · · · + Xn)

)
=

∑
n≥0

∫ ∞

0
· · ·

∫ ∞

0
g(t − y1 − · · · − yn) dµ(y1) . . . dµ(yn).

Moreover, f is bounded, and if g is continuous then f is uniformly continuous.

Proof. The formal idea is that if f (t) =
∑

n≥0
(
g ∗ µ∗n

)
(t) then

f (t) = g(t) +
∑
n≥0

(
(g ∗ µ∗n) ∗ µ

)
(t)

= g(t) +

∫ ∑
n≥0

(
g ∗ µ∗n

)
(t − y) dµ(y)

= g(t) +

∫
f (t − y) dµ(y).

The justification for the various steps and for the regularity results follow from the hy-
potheses. �

For the Renewal Theorem 8.10 we will need to consider two cases for µ.

Definition 8.7. The measure µ is τ-arithmetic if

E := spt µ ⊂ {a + τk : k ∈ N}

for some a ∈ R (take a ∈ [0, τ) w.l.o.g.), and τ is the greatest such positive number.
Otherwise, µ is non-arithmetic.

Remark 8.8. If µ is τ-arithmetic and f satisfies the renewal equation, then it is clear from
the first form of (13) that, for each fixed t ∈ R, this gives a relationship involving only

f (t − kτ), g(t), µ{kτ}, for k ∈ N0.

Similarly, if f satisfies the renewal equation, then it is clear from the second form of (18)
that, for each fixed t ∈ R, this gives a relationship involving only

f (t), g(t − kτ), µ{kτ}, for k ∈ N0.

Remark 8.9. The renewal theorem below refers to the limit behaviour of the solution f (t)
to the renewal equation as t → ∞. Recall f (t) =

∑
k≥0 E g

(
t − (X1 + · · · + Xn)

)
.

Since f = g ∗ U and U is asymptotically L1 normalised by the mean of µ, (at least in
the non-arithmetic case) we expect that asymptotically f is the integral of g normalised by
the mean of µ. More carefully, we argue as follows.
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Non-arithmetic case. In order to find an approximation to f (t) for large t, approximate
g by a sum of functions of the form αX[a,b]. First suppose g is itself a summand of this
form, t >> b and b − a << λ. The probability that t − (X1 + · · · + Xn) ∈ [a, b] for some n is
approximately [b−a]/λ, and this is the same for the probability that t−(X1+· · ·+Xn) ∈ [a, b]
for exactly one n. It follows that f (t) ≈ α[b − a]/λ. By summing, for general g it follows
that f (t) ≈ λ−1

∫
g(x) dx.

Arithmetic case. In order to find an approximation to f (t) for large t, it follows from
Remark 8.8 that the relevant arguments for g are t−kτ for k ∈ N0. First suppose g(t−k′τ) =

α for some k′ and that otherwise g(t − kτ) = 0, and suppose t >> t − k′τ. The probability
that t − (X1 + · · · + Xn) = t − k′τ for some (and hence exactly one) n is approximately
1/λd. It follows that f (t) ≈ λ−1α. By summing, for general g, it follows that f (t) ≈
λ−1 ∑∞

j=−∞ g(t + jτ). �

Theorem 8.10 (Renewal theorem). Suppose the hypotheses as for Proposition 8.6 and that
f ∈ F is the solution of the renewal theorem. If µ is non-arithmetic then

(19) lim
x→∞

f (x) = λ−1
∫

g(t) dt.

If µ is τ-arithmetic then for t0 ∈ [0, τ),

(20) lim
k→∞

f (t0 + kτ) = λ−1
∞∑

j=−∞

g(t0 + jτ).

Proof. Method 1. This makes rigorous the informal argument in Remark 8.9 by using
acoupling argument.

Method 2. We outline the non arithmetic case.
Step (a). From (13) one gets∫ x

−∞

g(t) dt =

∫
f (t)ψ(x − t) dt = ( f ∗ ψ)(x) where ψ(t) =

0 t < 0
µ[t,∞) t ≥ 0

.

Step (b). Hence

( f ∗ ψ)(x)→
∫

g(t) dt as x→ ∞.

(Think of ( f ∗ ψ)(x) as a weighted average of values of f at points y < x.)

Step (c). By Wiener’s theorem, since we can show ψ̂(u) , 0,

( f ∗ φ)(x)→

∫
φ∫
ψ

∫
g(t) dt as x→ ∞,

for any φ ∈ L1(R).
We can check that

∫
ψ = λ.

Step (d). Setting φ to be an approximation to the Dirac δ-function and using the uniform
continuity of f , it follows that

f (x)→ λ−1
∫

g(t) dt as x→ ∞.

Step (e). If g has a discrete set of discontinuities, then we approximate g by continuous
functions.

(Arithmetic case?) �

We use the following, which is just a restatement of the previous theorem for µ with
finite discrete support.
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Corollary 8.11. Suppose m ≥ 2, t1, . . . , tm > 0 are “times”, and p1, . . . , pm are probabil-
ities, so that

∑
i pi = 1. Let g be as before Proposition 8.6 and let f satisfy the renewal

equation

(21) f (t) = g(t) +
∑

i

pi f (t − t)i).

Let λ =
∑

i piti.
If {t1, . . . , tm} is non-arithmetic then

lim
t→∞

f (t) = λ−1
∫

g(t) dt.

If {t1, . . . , tm} is τ-arithmetic then

lim
k→∞

f (t0 + kτ) = λ−1
∞∑

k=−∞

g(t0 + kτ),

for all t0 ∈ [0, τ).

9. CJM Processes

9.1. Notation and Non-probabilistic aspects. Consider a population of individuals with
an initial ancestor denoted by φ. This individual will have a finite number of children, each
of these will have a finite number of children, etc. Each individual apart from the initial
ancestor has exactly one parent and there is no notion of breeding in this model.

(Later we will impose a notion of absolute time, and of birth and death times.)

The set of all individuals (alive or dead) is naturally represented by a tree T ⊂
⋃

k≥0 N
k,

where N0 = {∅} and Nk is the set of finite sequences i = i1 . . . ik of positive integers. We
use the standard notations |i| for the length of i, i|k for truncation and i j for concatentation.

Motivated by the above we require:
(1) ∅ ∈ T ;
(2) i ∈ T implies (the unique kth generation ancestor) i|k ∈ T for k < |i|;
(3) i1, . . . , iN i ∈ T and i(N i + 1), i(N i + 2), · · · < T , where N i is the number of children

of i.

Associated with each i ∈ T is a life-story U i = (Li, ξi) where
(1) Li ∈ [0,∞) is the lifetime of i;
(2) ξi : [0,∞)→ N0

1 is a bounded non-decreasing right-continuous function, and ξi(t)
is the number of births from i up to and including time t. We assume ξ(0) = 0.

The jumps in ξi determine age ti( j) of i at the birth of the jth child of i. The number of
births at age t is the size of the jump at t. The total number of births for i is denoted N i.
The ages at time of berth satisfy

(22) 0 < ti(1) ≤ ti(2) ≤ · · · ≤ ti(N i) ≤ Li.

More precisely, define

(23) N i := ξ[0,∞), ti( j) := inf{t : ξi(t) ≥ j}.

We also w.l.o.g. make the assumption

(24) ti(N i) ≤ Li.

Then (22) follows, as does

(25) ξi(t) = max
{
j : ti( j) ≤ t

}
.

See Figure 1, where a different notation is used.

1N0 is the set of natural numbers together with 0.
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In the usual way, ξi is the distribution function for a measure, also denoted by ξi. Thus

ξi(s, t] = ξi(t) − ξi(s), ξi(t) = ξi(0, t].

The measure ξi is a sum of Dirac measures, one for each birth and counted with multiplic-
ities. More precisely,

(26) ξi =

N i∑
j=1

δti( j).

The time at the birth of an individual is defined recursively by

(27) σ∅ = 0, σi j = σi + ti( j).

Thus if we attach the time ti( j) to the edge from j to jk then the time at birth of i is the sum
of the times along all edges in i1 . . . i|i|. That is

(28) σi = t∅(i1) + ti1 (i2) + · · · + ti1...in−1 (in) =

n∑
k=1

ti1...ik−1 (ik) if |i| = n ≥ 1.

Example 9.1. We use standard notation.
Consider a fractal set indexed by a tree T in the usual manner. That is, the n-cell ∆i is

replaced by a scaled copy of F i(G0) =
⋃M

j=1 f i
j (G0), where F i = { f i

1, . . . , f i
M} is an IFS of

similarities in Rk with contraction ratios `i
1 ≥ · · · ≥ `

i
M .

In this case the ages of i at times of giving birth and at death are defined by

ti( j) = log 1/`i
j, Li = log 1/`i

M .

In particular, from (28) by setting

ti( j) = log
(
`i

j

)−1
, `i

j = exp
(
−ti( j)

)
,

it follows that the time at birth of the cell i is

(29) σi = log `−1
i , i.e. `i = exp (−σi) ,

where as usual `i :=
∏n

k=1 `
i1...ik−1
ik

if |i| = n.
Note for future reference that if F := { f1, . . . fm} and t j := log `−1

j then

(30)
∑

j

`αj = 1⇐⇒
∑

j

e−αt j

(
i.e.

∫ ∞

0
e−αtξ(dt)

)
= 1,

and more generally

(31)
∑
i∈Λ

`αi = 1⇐⇒
∑
i∈Λ

e−ασi = 1.
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