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Introduction

Quantum Theory and Quantum Computation

The main goal is to develop an understanding of Quantum Theory and its underlying mathematical
models, particularly as it applies to quantum computation.

In Quantum Mechanics (i.e. Quantum Theory in general), we consider properties such as position
and momentum which take an infinite set of values. As we will indicate later, this is modelled
mathematically by considering infinite dimensional Hilbert spaces and linear operators on such spaces.
This leads to many (interesting and difficult) functional analysis issues.

In Quantum Theory for quantum computing we need only consider finite dimensional Hilbert
Spaces, usually the n-dimensional inner product spaces Cn.1 The functional analysis difficulties are
not present.

However, all the quantum weirdness is present in this setting. This includes superposition and
entanglement, which imply the no-cloning theorem, superdense coding, teleportation, and non-locality
of quantum effects (including the famous double-slit experiment, the Einstein–Podolsky–Rosen [EPR]
paradox, and the results of John Bell showing quantum theory cannot be explained by additional
information in the classical sense). We will see all this fairly soon!

In quantum computation, quantum “weirdness” is the essential resource utilised and exploited.
We will see how this is done.

To reiterate, quantum theory in the finite dimensional setting is the optimal way to develop an
intuition for quantum theory in general.

Mathematics

To understand quantum computing, you absolutely must become fluent in the mathematical
model. Michael Nielsen [MN19, First Lesson, preceding “Part I: The state of a qubit”]

... it is impossible to explain honestly the beauties of the laws of nature in a way that people
can feel, without their having some deep understanding of mathematics. I am sorry, but
this seems to be the case. Richard Feynman [Fey, pp 39,40]

DON’T PANIC Douglas Adams. The Hitchhiker’s Guide to the Galaxy.

The background necessary to follow these notes is just some fairly basic linear algebra regarding
finite dimensional complex vector spaces, and basic properties of unitary and hermitian operators.
This is provided in Appendices A and B.

Structure of the Notes

In the first chapter we discuss the fundamental ideas of quantum theory, the mathematical models
used, and their highly nonintuitive consequences. The discussion is fairly informal – if something is
unclear it will hopefully be clarified in subsequent chapters.

1Cn is the vector space of n-tuples a = (a1, . . . , an) with inner product a · b = a∗1b1 + · · · + a∗nbn (where a∗i is the
complex conjugate of ai). Note that the inner product is conjugate linear in the first argument and linear in the second.
This convention is very useful when we later use the Dirac “bra-ket” notation, see Appendix D.
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In Chapter 2 we discuss the four quantum theory postulates for closed systems, the relevant
mathematical framework, and from there derive the nonintuitive consequences discussed in Chapter 1.

In Chapters 3 we discuss quantum computation, quantum circuits, non-cloning, superdense coding,
quantum teleportation.

In Chapter 4 we discuss further mathematical structures used in the mathematical models and
their consequences.

I use a significant number of footnotes. They provide additional information or more precise
comments on definitions and discussions.

In the Appendices we develop the necessary mathematics. I suggest you just go to the relevant
Appendices as necessary. Either there will be pointers in the main part of the text, or it should be
clear from context where to go. This way you will get to very interesting quantum material very
quickly!

The Future for Quantum Computation

[dW19] is an insightful essay concerning the potential impact of quantum computers.
[Pre18] discusses quantum computing in the near future.

2



Contents

1 Overview 5
1.1 Qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Bits and Qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 State Space, Physical Reality and Measuring Qubits . . . . . . . . . . . . . . . 6
1.1.3 Superposition and Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.4 The private world of qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Young’s Two-Slit Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 Experimental Set-Up and Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 The State Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Entangled Pairs of Qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.1 Quantum states for pairs of qubits . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2 Separable qubits and entangled qubits . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.3 The Bell state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 The EPR Paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.1 What does it mean for quantum theory to be complete? . . . . . . . . . . . . . 12
1.4.2 The EPR Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.3 Quantum theory is complete . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Quantum Postulates for Closed Systems 15
2.1 State Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 State Space Postulate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2 Three Physical Examples of Qubits . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1 Measurement Postulate (Preliminary Version) . . . . . . . . . . . . . . . . . . . 18
2.2.2 Example of Qubit Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.3 Distinguishing Relative Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.4 Hermitian Operators and Measurements . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.1 Discrete Time Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Continuous Time Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Combining Quantum Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Quantum Circuits 24
3.1 Quantum Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 No Cloning Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Teleportation of Qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Superdense Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Deutsch-Jozsa Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Composite Systems 25
4.1 Ensembles and Density Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 The Bloch Ball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Subsystems and the Reduced Density Operator . . . . . . . . . . . . . . . . . . . . . . 25

3



4.4 Schmidt Decomposition and Purification . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.5 Bell’s Inequality, CHSH Inequality, GHZ Inequality . . . . . . . . . . . . . . . . . . . . 25

Appendices 27

A Visualising Higher Dimensions 27

B Hermitiann and Unitary Operators 29
B.1 Inner Product Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
B.2 Operator Definitions in Terms of a “Good” Orthonormal Basis . . . . . . . . 30

B.2.1 Hermitian Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
B.2.2 Unitary Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
B.2.3 Normal Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

B.3 Definitions in Terms of Adjoint Operator . . . . . . . . . . . . . . . . . . . . . . 31
B.3.1 Adjoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
B.3.2 Hermitian Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
B.3.3 Unitary Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
B.3.4 Normal Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

B.4 Polar Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
B.5 Another Characterisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

C Determinant and Trace 33
C.1 Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
C.2 Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

D Dirac Bra-Ket Notation 35
D.1 Kets and Bras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
D.2 More on Inner Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
D.3 Outer Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

D.3.1 Definition and Matrix Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
D.3.2 Orthogonal Projectons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

D.4 Computing with Dirac Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

E The Bloch Sphere 38
E.1 To include . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

F Functions of Normal Operators 40
F.1 Examples of Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
F.2 Power Series Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
F.3 Definition for Normal Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
F.4 Matrices for the Schrödinger Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

G The Pauli Matrices 42

Bibliography 42

4



Chapter 1

Overview

1.1 Qubits

1.1.1 Bits and Qubits

Bits: physical representations, states & mathematical model

A (classical) bit1 is the basic unit of information in computing, information theory, digital communi-
cations. A bit can take one of two values, typically 0 or 1 as in computing, but also true/false, yes/no,
+/−, etc. These values are also called the possible states of the bit.

A bit has various physical realisations such as a bit in computer hardware or software, the presence
or absence of a hole in punched computer cards of old, a switch being on or off, an electric current
having one of two distinct voltages (high or low), etc.

Mathematically, a bit is modelled by the set {0, 1} containing two distinct elements, and the state
of the bit is then either 0 or 1. Often we abuse language and
• refer to the “bit 0” or the “bit 1”, rather than the state of the bit being 0 or 1,
• use the word “bit” both for the mathematical model and for various physical realisations.

Qubits: states, mathematical model & physical realisations

A quantum bit or qubit2 is the basic unit in quantum computing. It is the quantum generalisation of
a (classical binary) bit. It can take as its value/state any linear superposition of the form

|ψ〉 = α|0〉+ β|1〉 ∈ C2, where |α|2 + |β|2 = 1, α, β ∈ C, (1.1)

where |0〉 =

[
1
0

]
and |1〉 =

[
0
1

]
. Note that {|0〉, |1〉} is the standard/computational (orthonormal)

basis for C2. We can think of |0〉 and |1〉 as the two values 0 and 1 of a classical bit.3

The coeffecients α and β are called amplitudes.
The notation |ψ〉 is due to Dirac. Dirac notation is discussed in Appendix D
Thus a qubit is a linear superposition of classical bits and is mathematically modelled by points

on the unit sphere in C2.4

To gain an intuitive understanding it is often sufficient to take α, β ∈ R in (1.1). In this case
−1 ≤ α, β ≤ 1 with α2 + β2 = 1.

Treating qubits in a mathematical/abstract manner enables us to develop quantum theory in a
manner independent of any particular physical realisation

1“Bit” is a contraction of “binary information digit”.
2“Qubit” — pronounced “q(ueue)bit” — is a contraction of “quantum bit”.
3This is consistent with the ket notation, where |v〉 is a vector with label v.
4This is not quite correct. Two vectors |φ〉 and |ψ〉 on the unit sphere are said to be equivalent if |φ〉 = eiθ|ψ〉 for

some θ ∈ R. Qubits correspond to equivalence classes of points on the unit sphere. In particular, |φ〉 and −|φ〉 denote
the same qubit. We also sometimes refer to a non-zero vector |v〉 ∈ C2 as a qubit. In this case we intend the normalised

vector |v〉
‖|v〉‖ .
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Every two-state physical quantum system is a qubit. We will discuss three such realisations: the
two lowest energy levels of an electron, linear polarisation of photons, and spin 1/2 particles. Quantum
computers are/will be built from these and other physical realisations!

As previously for bits, we abuse language and
• refer to the “qubit |ψ〉”, rather than the state of the qubit being |ψ〉,
• use the word “qubit” both for the mathematical model and for various physical realisations.

1.1.2 State Space, Physical Reality and Measuring Qubits

Quantum Theory is truly weird, at least to our “classical” way of thinking.

1. Quantum states are “real”. For any unit vector |ψ〉 ∈ C2 (state space for qubits) we can prepare
multiple qubits in the state |ψ〉. Moreover, we can physically manipulate/transform these qubits
into other qubits in a manner which corresponds to applying a prescribed unitary operator in C2.

2. Given a classical bit, we can read/observe its state. This happens in a (classical) computer.

But for qubits this is not the case, the situation is completely different.

A measurement process for qubits corresponds to an orthonormal basis in C2, also known as the
measurement basis.5

(a) If this measurement basis is {|0〉, |1〉} and we measure one of the prepared qubits in the
state |ψ〉 = α|0〉+ β|1〉, then it will give the value 0 with probability |α|2 and the value 1
with probability |β|2. Moreover, after measurement the state will change/“collapse” to the
state |0〉 in the first case and the state |1〉 in the second case.

(b) In particular from (a), if the state after measurement is |0〉 then repeated applications of
the same measurement of the qubit will continue (with probability 1) to give the state |0〉.
Similarly for |1〉.

(c) The qubit “decides” whether its value is 0 or 1 at the instant of measurement, and not
prior to measurement.6

(d) More generally, suppose the measurement corresponds to the orthonormal basis {|u1〉, |u2〉}.
After this measurement the state will change/collapse7 to one of these basis vectors, the
“value” obtained will be the “label” u1 or u2 for this basis vector, and if |ψ〉 = α1|u1〉+α2|u2〉
the respective probabilities will be |α1|2 or |α2|2. The obvious analogues of (a), (b) and (c)
also hold.

In summary, orthonormal bases of qubit states are naturally associated with measurement pro-
cesses, and conversely.

1.1.3 Superposition and Ensembles

Later we consider ensembles, probabilistic weightings of qubits such as E = {(|0〉 , p), (|1〉 , q)}, where
0 ≤ p ≤ 1, 0 ≤ q ≤ 1 and p2 + q2 = 1. In this example the qubit is in the state |0〉 with probability p
and in the state |1〉 with probability q.

The qubit |ψ〉 = α |0〉 + β |1〉 is not the same as the ensemble E = {(|0〉 , |α|2), (|1〉 , |β|2)}. For
example, let α = β = 1/

√
2. Define8

|+〉 :=
1√
2
|0〉+

1√
2
|1〉 , |−〉 :=

1√
2
|0〉 − 1√

2
|1〉 . (1.2)

See Figure 1.2. Note |ψ〉 = |+〉. Also see (2.1).

5This is not quite correct, there are more general measurement processes, but for present purposes this will suffice.
6With two or more entangled qubits the situation is more complex, as we discuss in Section 1.3.
7I think “collapse” can be misleading terminology. Every state can serve as one of the possible outcome states for

some measurement. But on the other hand, there is only a restricted (for us — finite) set of possible outcomes for each
given measurement.

8These are important qubits.
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Figure 1.1: A section of C2. (from [Vaz12])

Measurements9 of |ψ〉 and E in the {|0〉 , |1〉} basis both give |0〉 or |1〉 with probability 1/2. But
measurement of |ψ〉 in the {|+〉 , |−〉} basis gives |+〉 with certainty and |−〉 with probability 0. On
the other hand, for the ensemble E measurement in the {|+〉 , |−〉} basis gives |+〉 and |−〉 each with
probability 1/2. Exercise

In the case of the ensemble E , the state is either in state |0〉 or the state |1〉. We just do not know
which. In the case of |ψ〉 the state is definitely not in either state |0〉 or |1〉. It is in a superposition
of |0〉 and |1〉. It is also in a superposition of the states |u1〉 and |u2〉 for any orthonormal basis
{|u1〉 , |u2〉}. You will gain an intuition for this as we proceed.

1.1.4 The private world of qubits

A quantum state (or qubit) does not correspond to a physical state in the classical sense.
Qubits live in their own private C2 state space/world. This is a much “richer” world than the

physical world it represents. The coefficients α1 and α2 in |ψ〉 = α1|u1〉+ α2|u2〉 contain information
about the outcomes of measurement in the orthonormal basis {|u1〉, |u2〉}, as we saw in (d) above. But
because, after measurement, the state of the qubit collapses to one of these basis vectors, the original
state can no longer be “examined” by looking at that particular qubit.

But if someone sends us a large supply of identically prepared qubits α|0〉 + β|1〉, then we can
obtain good estimates for |α| and |β|. How? In fact we can do considerably more than this, as we
will later discuss.10

1.2 Young’s Two-Slit Experiment

(Optional) Bonus Material!

Young’s experiment is the classic quantum experiment, so a brief discussion seems mandatory.

According to Richard Feynman:

. . . it contains the only mystery [in quantum theory]. We cannot make the mystery go
away by “explaining” how it works. We will just tell you how it works. In telling you how
it works we will have told you about the basic peculiarities of all quantum mechanics.

The essential element in the “telling” is the superposition principle. However, we will need to move
a little beyond qubits to a different state space.

9See the preceding discussion of measurement by projection. In the case of E just treat each possibility |0〉 and |1〉
separately and weight with the appropriate probabilities, here 1/2.

10If α = r1e
iθ1 , β = r2e

iθ2 in polar form, then we estimate r1 = |α|2 and r2|β|2 by a simple frequency analysis on
the outcomes of measurements in the {|0〉, |1〉} basis. Although we cannot estimate θ1 and θ2, we can estimate the
relative phase θ1 − θ2 (mod 2π) by using measurements corresponding to orthonormal bases other than the standard
basis. Physically, this is all that is relevant. We discuss this later.
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1.2.1 Experimental Set-Up and Outcomes

Figure 1.2: Double-slit experiment with photons/electrons or bullets. I1 is the result if slit 2 is
covered, I2 is the result if slit 1 is covered. I1 + I2 is the result if both slits open and bullets are used,
I1,2 if photons/electrons are used ([GHW09, p 177]). The diagram on the right shows 16, 64, 256, 1024
photons strikes respectively ([SW10, p 9])

In Diagram a in Figure 1.2, photons/electrons or bullets are fired at a panel with two narrow slits
of width appropriate to the particles used. If slit 2 is covered those particles which are not absorbed by
the panel, and so pass through slit 1, will concentrate on a screen behind the panel with an intensity in
the vertical direction according to the approximately normal distribution I1. The dispersion is caused
by interaction with the edges of the slit. Similarly, if slit 1 is blocked the intensity is given by I2.

With photons or electrons, however, the situation is quite different. If both slits are open the
intensity is given by I1,2 as in Diagram b. This is similar to the interference pattern obained if a
steady water wave pattern is sent towards the panel, as in Figure 1.4. The peaks of the circular waves
interfere constructively, as do the troughs, to give maximum intensity (squared amplitude) along the
red lines. (The intensity peaks decrease as one moves away from the point on the screen opposite
midway between the two slits.) In between peaks and troughs one obtains destructive interference.

Moreover, with photons or electrons one obtains the same interference pattern even if the pho-
tons/electrons are fired one at a time. Each electron/photon is exhibiting a wave pattern of self
interference. This is very weird!

1.2.2 The State Space

To simplify matters, imagine the screen is divided into many small regions Rx, each of which is denoted
by some point x = (x, y) ∈ Rx. See Figure 1.4.

The possible outcomes of a particle striking the screen are given by the N possible values of x.11

Striking the screen is the measurement process. The outcomes are mutually exclusive and regarded as
exhaustive in our set-up. For these reasons we take the state space model for a particle just prior to
striking the screen to be an N -dimensional complex inner product space, not C2 as for qubits, with

11So N = 8× 15 = 120 here!
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Figure 1.3: Water waves. (from https://www.tf.uni-kiel.de/matwis/amat/iss/kap_4/illustr/

s4_2_2.html

Figure 1.4: Screen as in Figure 1.2. (The dotted red lines are just to indicate that they are directly
behind the two slits on the front panel.)
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an orthonormal basis consisting of vectors |x〉. Without loss of generality we can use CN with the
standard basis vectors.

Just as an arbitrary qubit can be written α |0〉+ β |1〉, here the state of an arbitrary particle just
prior to impacting the screen will be a superposition

|ψ〉 :=
∑
x

α(x) |x〉 ,
∑
x

|α(x)|2 = 1. (1.3)

In particular, for a particle (electron or photon) which we know passed through slit j (for example,
if the other slit was closed), the state will be a unit vector |ψj〉 ∈ CN which we write as

|ψj〉 :=
∑
x

αj(x) |x〉 , αj(x) = |αj(x)| eiφj(x) with
∑
x

|αj(x)|2 = 1. (1.4)

The probability pj(x) that such a particle will arrive in Rx can be measured by repeated such
experiments. It is given by pj(x) = |αj(x)|2 according to the analogue of the discussion in Section 1.1.2,
and thus |αj(x)| can be estimated in this manner. The phase of the particle just prior to arriving
at Rx is denoted by φj(x). Writing x = (x, y) in cartesian coordinates, where y = 0 is the vertical
height corresponding to midway between the slits, pj

(
x = (x, y)

)
is a discrete approximation to a

distribution which is a product of a normal distribution in y centred at height corresponding to slit j,
and a constant distribution in the x (horizontal) direction for an interval rougly the length of each slit.
See I1, I2 in Figure 1.2, showing the y dependence. The distributions I1, I2 are displaced vertically
from each other by the distance between the two slits.

Supose we fire electrons or photons at the panel and consider only those that are not blocked by
the panel but pass through the slits and register in some way on the screen to the right in Figure 1.2.
(Note that I said pass through the slits, not “pass through one of the slits”!!) Provided there was
no measurement which would have enabled us to know if the particle passed through slit 1 (and
equivalently in this case no measurement that would have enabled us to know if the particle passed
through slit 2), the state space at any time after the particle has passed through the slits allows for
both possibilities. One should not think: “the particle actually passed through one or the other slit
but we just do not know which”.

Let s be the distance between the two slits, L the distance between the panel and the screen, and
λ the wave length of the particle. The state of the particle in these circumstances just prior to striking
the screen, for L� s, is approximately the equal superposition12

|ψ〉 =
1√
2

(
|ψ1〉+ |ψ2〉

)
. (1.5)

Fixing x and writing αj(x) = rje
iφj in polar coordinates, the coefficient/amplitude of |x〉 in |ψ〉 is

1√
2

(
α1(x) + α2(x)

)
=

1√
2

(
r1e

iφ1 + r2e
iφ2
)
, (1.6)

12This is not surprising, but to argue it more carefully requires considering a larger state space involving the slits.
This is done, for example, in [FLS65, Vol III, Chapter 2, §§3-1,3-2]. Alternatively, it is an example of a general principle
for superposition of amplitudes in such situations, see for example [GHW09, p 176].

Finally, it may seem surprising that 1/
√

2 is the correct normalisation factor to ensure ‖ |ψ〉 ‖ = 1. But note 〈ψ|ψ〉 =
1 + 〈ψ1|ψ2〉 and 〈ψ1|ψ2〉 ≈ 0 due to the highly oscillatory behaviour of cos(φ1−φ2). To pursue this point a little further,

〈ψ1|ψ2〉 =
∑
x

r1(x) r2(x) cos
(
φ1(x)− φ2(x)

)
≈
∫
r1(y) r2(y) cos

(
φ1(y)− φ2(y)

)
dy where x = (x, y) and ignoring “constant” x dependence of everything

≈
∫
r1(y) r2(y) cos

( sy
λL

)
dy from (1.8)

= −λL
s

(∫
d

dy

(
r1(y) r2(y)

)
sin
( sy
λL

)
dy + boundary terms

)
.

Since λ� s, this last term is, in effect, bounded in absolute value by constant× λ.
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and so the probability of the particle landing at x is

1

2

∣∣∣r1e
iφ1 + r2e

iφ2
∣∣∣2 =

1

2

(
r1e

iφ1 + r2e
iφ2
)(

r1e
−iφ1 + r2e

−iφ2
)

=
1

2

(
r2

1 + r2
2

)
+ r1r2 cos(φ1 − φ2)

(1.7)

The term 1
2

(
r2

1 + r2
2

)
is the probability of arriving in Rx for the mixed state corresponding to equal

probabilities of passing through slit 1 and slit 2. The second term r1r2 cos(φ1−φ2) is the interference
term which has a magnitude comparable to the first term but may be additive or subtractive.

It is not difficult to show13 that, for s, y � L, the distance between stripes in Figure 1.2 is
approximately λL/s and

φ1(x)− φ2(x) ≈ 2π
sy

λL
, (1.8)

This can also be used to estimate the wave length of the particles.

Remark The fact that for the superposition of mutually exclusive events (in this case: passing
through slit 1 and passing through slit 2) amplitudes add but probabilities do not, is critical to the
weirdness of quantum events.

1.3 Entangled Pairs of Qubits

1.3.1 Quantum states for pairs of qubits

We have seen how the quantum analogue of a bit with values in {0, 1} is a qubit whose state can be
any linear combination, i.e. superposition, of the orthonormal vectors |0〉 and |1〉 in (the unit sphere
for) C2.

Similarly, we can consider a pair of bits and the quantum analogue of a pair of qubits. For classical
bits the 4 possible values of a pair of bits are {00, 01, 10, 11}14. In quantum mechanics these values
correspond to the following orthonormal unit vectors in (the unit sphere for) C4.

{00} → |00〉 :=


1
0
0
0

 , {01} → |01〉 :=


0
1
0
0

 , {10} → |10〉 :=


0
0
1
0

 , {11} → 0|11〉 :=


0
0
0
1

 . (1.9)

Mathematically, the set of all possible unit length superpositions of the four basis vectors in (1.9)
is the set of all vectors/states on the unit sphere in C4 which are of the form

|ψ〉 := a00|00〉+ a01|01〉+ a10|10〉+ a11|11〉 ∈ C4, where aij ∈ C,
∑
|aij |2 = 1. (1.10)

It is physically possible to produce pairs of qubits corresponding to any such state! This has very
counterintuitive consequences.

A typical measurement basis for states in C4 uses the standard basis {|00〉, |01〉, |10〉, |11〉}. This
measurement is physically achieved by separate measurements on the first and second qubits, although
as noted above the two qubits may be in highly separated locations.15 The squared moduli of the

13The distance from the bottom/top slit to the point on the screen at height y, for s, y � L, is(
L2 +

(
y +

s

2

)2)1/2

≈ L+
1

2
L−1

(
y ± s

2

)2
,

and so the difference is ≈ sy/L. The waves radiating out from the two slits are in phase at y = 0 and the next values of
y for which the two waves will be in phase are given by sy/L = ±λ, i.e. y = ±Lλ/s. Also see [BS14, p 43, §2.3.4].

Thus the distance between bands on the right of Figure 1.2 is ≈ Lλ/s, and so φ1(x)− φ2(x) ≈ 2π
sy

λL
.

14It is conventional to list values in increasing binary order.
15Not all measurements can be achieved this way. The issue is whether or not the measurement is factorisable in the

tensor sense, as we discuss in subsequent chapters.

11



coefficients in (1.10) give the probabilities of the possible experimental outcomes, in a way analogous
to what happens for a single qubit as discussed in Section 1.1.2. The way we read off this information
is straightforward but the consequences are very weird indeed. We will discuss this for the example
of the Bell state (1.12).

1.3.2 Separable qubits and entangled qubits

We can easily produce pairs of qubits of the form α|0〉 + β|1〉 and α′|0〉 + β′|1〉 respectively, which
leads naturally to pairs of qubits which can be written in the product form(

α|0〉+ β|1〉
)(
α′|0〉+ β′|1〉

)
= αα′|00〉+ αβ′|01〉+ βα′|10〉+ ββ′|11〉 ∈ C4. (1.11)

However, not every pair of qubits in the form (1.10) can be written in the form (1.11).
If a state can be factorised as in (1.11) it is said to be separable, if not it is said to be entangled.

1.3.3 The Bell state

A particularly instructive example of an entangled pair of qubits is the Bell state

|Φ+〉 :=
1√
2
|00〉+

1√
2
|11〉 ∈ C4. (1.12)

Exercise: Show the Bell state is entangled.
It is possible to physically produce many examples of the Bell state, for example where the pair

of qubits is a pair of entangled polarised photons. Even though the two qubits in the Bell state (1.12)
are entangled, it is possible to physically separate them by over 1,200 km, and in principle by any
distance. See Section 1.4.

The 1√
2

coefficient in the Bell state for the |00〉 component and the implicit 0 coefficient for |01〉
together tell us that when the first qubit is measured in the standard basis {|0〉, |1〉} the result is 0
with probability (1/

√
2)2 +02 = 1/2, and in this case the first qubit moves into the state |0〉. Similarly,

the measurement result is 1 with probability16 1/2, and in this case the first qubit moves into the
state |1〉.

Suppose the measurement outcome for the first qubit is 0. The most astounding consequence is
that the qubit pair instantaneously moves/collapses to the state |00〉, and as a consequence the second
qubit instantaneously moves into the state |0〉.17 In effect, this conclusion is obtained by scratching
out the |11〉 term in (1.12) (since it begins with 1 but the first qubit is actually in the state |0〉) and
then normalising

1.4 The EPR Paradox

1.4.1 What does it mean for quantum theory to be complete?

Einstein, Podolsky and Rosen in [EPR35] argued that quantum theory is not a complete theory. They
accepted that in most quantum experiments conducted up to that time the results predicted were
probabilistic, perhaps due to some random interaction with the measuring apparatus or for some
other reason. This was not the situation they were addressing.

On the other hand, they pointed out that in certain experiments which involve entanglement (at
that time thought experiments, i.e. “Gedankenexperiment”, but subsequently experimentally realised
in [ADR82]), the outcome was determined before the measurement was conducted but quantum
theory did not include this information. It was in this sense that they claimed quantum theory was
not complete.

I describe the [EPR35] argument in the context of entangled qubits in the Bell state (1.12) and
the 2017 Micius (named after the satellite used) experiment [YCL+17] illustrated in Figure 1.5.

16By “probability” we just mean what occurs over many experiments in a frequency analysis.
17As we discuss later, using tensor notation |Φ+〉 = 1√

2

(
|0〉⊗|0〉+ |1〉⊗|1〉

)
∈ C2⊗C2 = C4, and orthogonal projection

onto span{|0〉} ⊗ C2 gives |00〉 after normalisation. That is, just scratch out any terms beginning with |1〉 and then
normalise.
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1.4.2 The EPR Experiment

Figure 1.5: Experimental set-up of satellite-based entanglement distribution. (Arxiv version of
[YCL+17])

Figure 1.6: Schematic representation of EPR set-up (from [RP11]). Alice and Bob are spacelike
separated at measurement time. Alice and Bob are traditionally responsible for the measurements in
such experiments. (From the list of authors and affiliations in [YCL+17] it seems unlikely either was
present on this occasion.)

A pair of qubits realized as linearly polarized photons have their polarizations entangled on the
satellite into the Bell state 1√

2
|00〉 + 1√

2
|11〉.18 After entanglement the first qubit is sent to Lijiang

and the second to Delingha Lijiang. Each qubit is measured in the {|0〉, |1〉} basis immediately upon
arrival.19 In the diagram, this means the Lijiang qubit before the Delingha qubit.

Suppose for sake of discussion that the first qubit arrives in Lijiang and is measured before the
second qubit arrives in Delingha and is measured, but the second qubit arrives and is measured before
there is time for any message (at the speed of light) to reach it regarding the measurement outcome
of the first qubit. Each evening pass of the satellite produces about 300 such events.

From the previous discussion concerning the Bell state the probability of the first qubit being
measured as 0 is 1/2, of the second qubit being measured as 0 is 1/2, and of the pair being measured
as 00 is 1/2. So the measurement results of the individual qubits are not independent, since if they
were then the probability of the pair being measured as 00 would be 1/4, and the state of the qubit
pair would be the product state 1

4 |00〉 + 1
4 |01〉 + 1

4 |10〉 + 1
4 |11〉 ∈ C4, not the Bell state. In fact

the measurement outcomes of the two qubits are perfectly correlated, both outcomes being 0 or both
being 1.

18In the actual experiment the Bell state 1√
2
|01〉− 1√

2
|10〉 was used. This does not alter the discussion in any significant

manner.
19A more complicated experiment was conducted with additional orthonormal bases. We return to this in later

discussions.
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How is this perfect correlation “enforced”? Quantum theory implies the first qubit measures as 0
with probability 1/2, as 1 with probability 1/2, but the “decision” as to which of these two outcomes
is the case is made at the time of measurement. For sake of argument suppose the first qubit measure
as 0 — how does the second qubit know that it must also measure as 0 if it is to be consistent with
the quantum theory prediction of equality of outcome?

Logically there are two possibilities:
(a) either there is an interaction between the two qubits faster than the speed of light (what Einstein

called “spooky action at a distance”), such that the second qubit “knows” the measurement
outcome for the first qubit,

(b) or there was no such interaction. In this case information about which one of the two shared/common
outcomes will occur for an entangled pair must have been available to each particle in the pair at
the time of entanglement (the last possible time for slower than speed of light interaction before
measurement).

In the case of (b) this additional information is not present in the Bell state, and so quantum
theory would not be a complete theory according to [EPR35].

By way of background we remark that there is indeed a simple classical model to completely
explain the outcome of the version of the EPR experiment as discussed here. All that is needed is
that at the time of entanglement both qubits are produced in the state |0〉 or both in the state |1〉,
with probability 1/2 for each possibility, and this choice is independent between pairs of qubits.

The difference between this model and the Bell state model shows up if we measure the individual
qubits in other than the orthonormal base {|0〉, |1〉}, as we will discuss in a later section.20

1.4.3 Quantum theory is complete

[EPR35] considered (a) to not be possible, and so came to the conclusion that (b) is true and quantum
theory is not complete. Einstein spent much of the remaining 20 years of his life looking for such a
complete theory.

However, John Bell in [Bel64] designed an experiment to decide between (a) and (b). A small
modification was proposed in [CHSH69] and carried out in [ADR82], with the most recent experiment
being the Micius experiment [YCL+17]. This has shown convincingly that quantum theory is com-
plete, any probabilistic or deterministic extension which includes other information (known as “hidden
variables”) implies correlations which are experimentally incorrect, and “spooky action at a distance”
is indeed what happens.

The idea that an event can be influenced by an event outside its past light cone certainly goes
against our classical intuition. It is worth remarking, however, that no classical information is trans-
mitted faster that the speed of light in these cases! We will return to this later in these notes.

20For future reference, what we are saying here is that the Bell state is distinct from the ensemble given by |00〉 with
probability 1/2 and |11〉 with probability 1/2.
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Chapter 2

Quantum Postulates for Closed
Systems

In this chapter we begin anew. The material in Chapter 1 may be considered as motivation for the
more careful treatment here, and we refer back to it occasionally.

The quantum postulates provide the framework for all of Quantum Theory. They are essentially
due to Paul Dirac (1930) [Dir58] and John Von Neumann (1932) [vN18].

We mainly discuss the case of finite dimensional state spaces. This is what is needed for quantum
computation, and in addition all the counterintuitive weirdness is already present in this setting.

In this chapter we only deal with closed systems, or more precisely, systems that can be approxi-
mated by closed systems. See Remark 2 in Section 2.1.1.

The goal is to obtain an understanding of the postulates and how to apply them.

You should now read Appendix E on the Bloch sphere as it is used in the discussion of qubit
measurement in Section 2.2 and provides a nice way of representing and thinking about qubits.

2.1 State Space

2.1.1 State Space Postulate

Postulate 1. Associated to any closed physical system is a complete separable1 complex inner product
space V (that is, a Hilbert space) known as the state space of the system. The system at each time is
completely described by its state vector at that time, which is a unit vector in the system’s state space.

Examples

In particular, C2 is the state space for qubits. Important examples of qubits are |0〉, |1〉 and

|+〉 :=
1√
2
|0〉+

1√
2
|1〉 , |−〉 :=

1√
2
|0〉 − 1√

2
|1〉 ,

|i〉 :=
1√
2
|0〉+ i

1√
2
|1〉 , |−i〉 :=

1√
2
|0〉 − i 1√

2
|1〉 .

(2.1)

A three level quantum system is represented by C3. State vectors in C3 are the standard basis
vectors, usually denoted |0〉, |1〉, |2〉, and more generally

|ψ〉 = α|0〉+ β|1〉+ γ |2〉 ∈ C3, where |α|2 + |β|2 + |γ|2 = 1, α, β, γ ∈ C. (2.2)

Similarly one uses Cn for n-level systems.

1finite dimensional spaces are always complete and separable
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Remarks

1. We only consider finite dimensional state spaces V , usually Cn for some n ≥ 2. This is sufficient
both for quantum computation and quantum information purposes (and for understanding all
the notions of “quantum weirdness”).2

2. An isolated or closed system is one which does not exchange any information, matter or energy
with any other environment. This is an idealisation and there are no closed systems, except
possibly for the universe itself.3

3. There is no physically observable difference between the physical system described by |ψ〉 and
that by eiθ |ψ〉, see Section 2.2.4 We call eiθ a global phase factor. The two vectors |ψ〉 and
eiθ |ψ〉 are said to be equivalent. To be more precise we should say that a state is given by an
equivalence class of unit vectors.

We later discuss relative phase, which is different and is physically significant. See Section 2.2.3.

4. Unit vectors in the state space are usually written in the ket form |ψ〉 using the Dirac notation,
see Appendix D. It is usually convenient to think of ψ itself as a name or symbol representing
the actual vector |ψ〉, as in the case |0〉 and |1〉.

5. As we discussed in Chapter 1, a state space in quantum theory describes physical reality in
a very different manner than a state space in classical physics describes physical reality. See
Section 2.2.

2.1.2 Three Physical Examples of Qubits

Every two-level quantum system is a qubit. Here are three examples that are useful to keep in mind
when dealing more abstractly with qubits.

The following diagrams are, of course, schematic only. As with any quantum state, the en-
ergy level/polarisation/spin is not determined prior to measurement and until then the value mea-
sured/observed after measurement is only predicted probabilistically from the prior state and the
particular measurement used.5

We give a more detailed discussion of the physical interpretation of qubit states |ψ〉 = α |0〉+β |1〉
and their measurement outcomes in each of these three cases in Section 2.2.2.

Energy levels of an electron in an atom

It is often possible to effectively limit an electron in an atom to its two lowest energy levels and to
produce electrons in any (complex) superposition of these levels. The quantum model is thus qubit
state space C2. The lowest energy level state is denoted by |0〉 and the next level by |1〉.

By shining light on the atom with the appropriate energy and for the appropriate length of time,
it is possible to move the electron from the |0〉 state to the |1〉 state and vice versa. By reducing the
time we shine the light, an electron initially in the state |0〉 can be moved halfway into the |+〉 state.

See [NC10, p280 Box 7.1] for details of how this is physically achieved.
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Figure 2.1: Electron energy levels of an electron in an atom. ([NC10, p14 Fig 1.2], [Vaz12, Notes Ch
1])

Figure 2.2: Horizontal and vertical polarisation of light. ([Vaz12, Lecture Notes Chapter 1])

Polarised photon

Individual photons have a polarisation modelled by qubit state space C2. The qubits |0〉 and |1〉 are
conventionally assigned to horizontal and vertical linear polarisation in the plane orthogonal to the
direction of propagation. See Figure 2.2.

By means of a horizontally polarised filter it is possible to produce a large supply of horizontally
polarized photons which are conventionally assigned the qubit state |0〉. Similarly for |1〉. To achieve
other states one passes the photons through a mixture of mirrors, phase shifters and beamsplitters.
A beamsplitter is a transparent slab which shifts the phase by an amount depending on the thickness
and transparency of the slab.

Spin 1/2 particle

All protons, neutrons, electrons, neutrinos, quarks, and certain atoms such as hydrogen and silver,
have a property called spin 1/2 6 which, after measurement in any direction in R3 , takes one of two
values, typically denoted by 1/2 and −1/2,7 or by ↑ (spin up, i.e. “in the direction of the measuring
device”) and ↓ (spin down, i.e. “in the opposite direction from the measuring device”). See Figure 2.3.
Spin in this case is modelled by qubit state space C2.

2In quantum mechanics we generally need a separable infinite dimensional Hilbert space. In this case the analogue of
the state vector, such as for the position of a particle in physical space R3, is a complex valued (“wave”) function defined
over R3 and typically “peaking” at some point in R3. Informally, the wave function is a complex superposition of Dirac
measures, one at each point in R3.

3And what is the universe? Quantum entanglement implies we need to consider events that will not come into our
past light cone until some time in our future.

4Thus the state space is really a complex projective space, but this is usually not the most convenient/intuitive way
to think about it.

5If the measurement is with respect to that same state as discussed in Section 2.2 then the probability is 1 and so we
do have an outcome with certainty.

6This is 2-state spin, which is the most common, but n states for any larger integer n are allowed in principle.
7The particular values ±1/2 are chosen essentially because they should sum to 0 from total spin conservation require-

ments, and they should differ by 1 in an appropriate system of units.
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Figure 2.3: Schematic representation of spin 1/2 particle. Spin up = |0〉 = |↑〉, Spin down = |1〉 =
|↓〉. (http://www.sussex.ac.uk/physics/iqt/research/researchers/simulation.html)

2.2 Measurement

2.2.1 Measurement Postulate (Preliminary Version)

Recall that we are only considering finite dimensional state spaces.

Postulate 2 (Preliminary version). Each orthonormal basis {|v1〉 , . . . , |vn〉} for the state space V
describes a measurement/observation as follows. If the state before measurement is

|ψ〉 = α1 |v1〉+ · · ·+ αn |vn〉

then the state after measurement is |vj〉 with probability |αj |2. In this case we say the outcome is (the
label) vj.

Remarks

1. If the orthonormal basis {|v1〉 , . . . , |vn〉} is the standard/computational basis {e1, . . . , en}, which
is usually written {|0〉 , · · · , |n− 1〉}, then we refer to measurement in the computational basis
or measurement in the standard basis.

2. In C2 for example, measuring |ψ〉 = α |0〉+ β |1〉 in the computational basis gives

(a) outcome 0, and |0〉 as the state after measurement, with probability |α|2,
(b) outcome 1, and |1〉 as the state after measurement, with probability |β|2.

3. In the previous example, if the outcome was |0〉, then all subsequent measurements in the
computational basis will give |0〉.8 Why?

4. Each orthonormal basis in the state space corresponds to a particular measurement in physical
space which gives mutually exclusive and exhaustive outcomes, one outcome for each basis vector.

For example, with qubits and the standard identification convention of Section 2.2.2, the or-
thonormal basis {|0〉 , |1〉} corresponds to measurement in the z-direction for spin 1/2 particles,
with outcome spin 1/2 (i.e. spin ↑) or spin -1/2 (i.e. spin ↓)
For the two-slit experiment in Section 1.2, the set of orthonormal basis vectors |x〉 correspond
to striking the screen in the various regions Rx.

It may be the case that there are technological problems in realising the measurement process
corresponding to a particular basis, but in principle there is no restriction. In the case of qubits,
all possible measurements can in fact be realised, for example, with spin 1/2 particles and a
suitably oriented Stern-Gerlach apparatus. See Appendix E.

8To be precise, this assumes the particle was not disturbed by the measurement process. Typically this would mean
s detector, such as a screen of some sort, was set up to register if the outcome was |1〉. Any particle not detected will be
in the state |0〉.
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5. Since eiθ |ψ〉 =
∑

i(e
iθαi) |vi〉 it follows that the probability of each outcome, and the state after

this outcome, are invariant under multiplication of |ψ〉 by the global phase factor eiθ. Similarly,
the state |vi〉 after measurement could equivalently be written eiφ |vi〉 for any φ.

6. We say a measurement is given by (or is w.r.t.9) the ket |v〉 ∈ C2 if the outcome of measuring
an arbitrary |ψ〉 is |v〉 with probability | 〈v|ψ〉 |2 = cos2 θ and is |v〉⊥ with probability 1 −
| 〈v|ψ〉 |2 = sin2 θ, where θ is the angle in C2 between |v〉 and |ψ〉. (See Appendix B.1.) This
is the same as measurement w.r.t. the orthonormal basis {|v〉 , |v〉⊥}. Thus w.l.o.g.10 we can
consider measurements given by a single ket. Of course, this is only true in C2.

Figure 2.4: A section of C2. |ψ〉 is measured w.r.t. |v〉 — the outcome is |v〉 with probability cos2(θ).

2.2.2 Example of Qubit Measurement

We discuss the situation for spin 1/2 particles, since in this case there is a particularly nice physical
interpretation of the measurement process.

Figure 2.5: Spin 1/2 particle measured by a Stern-Gerlach apparatus ([Vaz12, Notes Chapter 10])

A Stern-Gerlach apparatus generates a non homogeneous magnetic field in some direction in R3,
as in Figure 2.5. As is the case in this diagram, suppose the field is the vertical direction, which
we will call the z-direction. When a spin 1/2 particle |ψ〉 is passed through this field from the left
the particle is either deflected up or down. This corresponds to a measurement of the spin of |ψ〉 in
the z direction, which by convention corresponds to a measurement of |ψ〉 w.r.t. |0〉 as discussed in
Section 2.2.2 Remark 6. See the Bloch sphere representation for qubits discussed in Appendix E.

If |v〉 = cos( θ2) |0〉+ sin( θ2)eiφ |1〉 is an arbitrary unit vector in C2, then measurement of |ψ〉 w.r.t.
|v〉 is physically achieved by a Stern-Gerlach apparatus oriented in the direction in R3 corresponding to
|v〉, and hence the apparatus orientation is given by the spherical coordinates (θ, φ). See Appendix E.

We will not be discussing technical aspects of physical implementations in these notes, but see [NC10,
Section 7.7, pp 324ff] for the physical implementation via nuclear magnetic resonance [NMR]. However,
the signal to noise ratio is a major problem with this approach for quantum computation.

9“w.r.t.” is an abbreviation for “with respect to”
10“w.l.o.g.” is an abbreviation for “without loss of generality”.
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2.2.3 Distinguishing Relative Phase

We noted in Section 2.2.1 Remark 5 that measurements do not distinguish between global phase
factors. However, they can distinguish relative phase factors such as eiφ in

|ψ〉 = cos
θ

2
|0〉+ sin

θ

2
eiφ |1〉 . (2.3)

A measurement of |ψ〉 in the computational basis produces the |0〉 or |1〉 state with probabilities
cos2 θ

2 and sin2 θ
2 respectively, which provides no information about φ.

But we can get some information about φ and estimate it accurately if we can access and measure
a large number of similarly prepared qubits. For this consider measurements in the {|+〉 , |−〉} basis.
From (2.1) we see

|0〉 =
1√
2
|+〉+

1√
2
|−〉 , |1〉 =

1√
2
|+〉 − 1√

2
|−〉 . (2.4)

So from (2.3) and (2.4)

|ψ〉 =
1√
2

(
cos

θ

2
+ sin

θ

2
eiφ
)
|+〉 +

1√
2

(
cos

θ

2
− sin

θ

2
eiφ
)
|−〉 =: α′ |+〉+ β′ |−〉 . (2.5)

Therefore

|α′|2 =
1

2

(
cos

θ

2
+ sin

θ

2
eiφ
)(

cos
θ

2
+ sin

θ

2
e−iφ

)
=

1

2
(1 + sin θ cosφ),

|β′|2 =
1

2
(1− sin θ cosφ).

So given information about θ we gain some information about the relative phase φ, particularly if we
can measure a large number of similarly produced qubits.

2.2.4 Hermitian Operators and Measurements

Every orthonormal basis {v1, . . . , vn} in an n-dimensional state space V determines the eigenvectors
of an hermitian operator H : V → V , but not the eigenvalues. The eigenvalues are essentially labels,
and do not normally have a canonical physical interpretation in our setting.11

Conversely, suppose H : V → V is hermitian with distinct eigenvalues λ1, . . . , λk (k ≤ n), corre-
sponding orthogonal eigenspaces E1, . . . , Ek, and orthogonal projection operators Pi : V → Ei. Then

V = E1 ⊕ · · · ⊕ Ek, H =
∑
i

λiPi, I =
∑
i

Pi, (2.6)

where I : V → V is the identity operator and V = E1 ⊕ · · · ⊕ Ek just says the Ei are mutually
orthogonal and every v ∈ V has a unique decomposition v = v1 + · · ·+vk with vi ∈ Ei. See Figure 2.5.

The other important properties of the Pi are

Pi = P ∗i , P 2
i = Pi, PiPj = O if i 6= j, (2.7)

where O is the zero operator sending all vectors to the zero vector.
Choosing a set of orthonormal basis vectors for each Ei and taking the union gives a basis for V

which is unique up to phase factors if k = n, since then the Ei are all one dimensional.

The following version of Postulate 2 is indeed an extension of the preliminary version in Sec-
tion 2.2.1, as we note in the subsequent Remark 3.

Postulate 2. Suppose H : V → V is hermitian as in (2.6). Then H describes a measurement/observation
as follows. If the state before measurement is |ψ〉 then the state after measurement is Pi |ψ〉 /‖Pi |ψ〉 ‖
with probability ‖Pi |ψ〉 ‖2. In this case we say the outcome is λi.

11However, in physics, where the state space is infinite dimensional, the eigenvectors may represent position or mo-
mentum for example, and the eigenvalues take on physical meaning. See Footnote 2
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Figure 2.6: Schematic representation for (2.6) of V = C3 = E1 ⊕ E2,
|ψ〉 = P1 |ψ〉+ P2 |ψ〉, ‖ |ψ〉 ‖2 = ‖P1 |ψ〉 ‖2 + ‖P2 |ψ〉 ‖2.

Remarks

1. It is NOT the case that the state after measurement by H of the state |ψ〉 is H |ψ〉.
2. The denominator ‖Pi |ψ〉 ‖ in Pi |ψ〉 /‖Pi |ψ〉 ‖ is needed for normalisation purposes.
3. Since

|ψ〉 = P1 |ψ〉+ · · ·+ Pk |ψ〉 by (2.6)

= ‖P1 |ψ〉 ‖
P1 |ψ〉
‖P1 |ψ〉 ‖

+ · · ·+ ‖Pk |ψ〉 ‖
Pk |ψ〉
‖Pk |ψ〉 ‖

,
(2.8)

it is clear by taking k = n that Postulate 2 is a generalisation of the previous preliminary version.
4. Let p|ψ〉(λi) be the probability that the outcome of the measurement H is λi if the initial state

is |ψ〉.
Since Pi is a projection operator

P ∗i = Pi, P 2
i = Pi. (2.9)

Hence12

p|ψ〉(λi) := ‖Pi |ψ〉 ‖2 = (Pi |ψ〉)∗Pi |ψ〉 = 〈ψ|P ∗i Pi|ψ〉 = 〈ψ|Pi|ψ〉 . (2.10)

Summarising, the important point is that

p|ψ〉(λi) := ‖Pi |ψ〉 ‖2 = 〈ψ|Pi|ψ〉 . (2.11)

5. Note
∑

i p|ψ〉(λi) = 1. We can see this two ways:

• Either, from (2.8) and (2.11), 1 = 〈ψ|ψ〉 =
∑

i ‖Pi |ψ〉 ‖2 =
∑

i p|ψ〉(λi),

• or, from (2.11) and (2.6),
∑

i p|ψ〉(λi) =
∑

i 〈ψ|Pi|ψ〉 = 〈ψ|
∑

i Pi|ψ〉 = 〈ψ|I|ψ〉 = 1.

6. The type of measurements we have been discussing are known as projective measurements or von
Neumann measurements. In quantum computing it is sometimes convenient to deal with more
general procedures known as generalised measurements. However, it is also possible to realise
such measurements by means of projective measurements, but not so conveniently.

12see Appendix D.4 for the third “=”.

21



2.3 Evolution

2.3.1 Discrete Time Evolution

Postulate 3. The time evolution of a closed system is described by a unitary transformation U
operating on its state space V . That is, if |ψ〉 is the state of the system at time t1 then U |ψ〉 is the
state at time t2. The operator U depends on t1 and t2 but not on the state |ψ〉.

Remarks

The requirement that U be unitary is a natural one. In particular, evolution should preserve super-
position of states and map state vectors to state vectors. That is

U(α |v〉+ β |w〉) = αU |v〉+ β U |w〉 , ‖U |v〉 ‖ = 1. (2.12)

These conditions imply U is a unitary transformation. See Appendix B.5.

Examples

Please read the first few paragraphs of Appendix G for basic information about the Pauli matrices.

1. The quantum NOT gate is the Pauli matrix σ1 = X =

[
0 1
1 0

]
. It is also called the bit flip

matrix/gate since it takes |0〉 to |1〉 and |1〉 to |0〉.
As part of a quantum circuit it is represented as

X or α |0〉+ β |1〉 X β |0〉+ α |1〉 , (2.13)

with the input and output indicated in the second case.

2. The phase flip gate is the Pauli matrix σ3 = Z =

[
1 0
0 −1

]
. It leaves |0〉 unchanged and changes

|1〉 to − |1〉, with the factor −1 = e−iπ being the phase factor change.

As part of a quantum circuit it is represented as

Z or α |0〉+ β |1〉 X α |0〉 − β |1〉 . (2.14)

3. The Hadamard gate is given by the matrix H =
1√
2

[
1 1
1 −1

]
. It is represented by

H . Note |0〉 H |+〉 , |1〉 H |−〉 . (2.15)

The operator H is unitary, trace free hermitian. Check this. In particular H ∈ H0 and H =
1√
2
(X + Z). See Appendix G equation (G.4).

2.3.2 Continuous Time Evolution

Often we require a version of this postulate concerning evolution in continuous time.

Postulate 3. The time evolution of a closed system is described by the Schrödinger equation

d

dt
|ψ〉 = −iH |ψ〉 . (2.16)

H is a time-independent hermitian operator known as the Hamiltonian of the system.
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Remarks

1. The Schrödinger equation is usually written in the form i~ d
dt |ψ〉 = H |ψ〉 where ~ is Planck’s

constant. We normally choose units such that ~ = 1.
2. The Hamiltonian H is not the Hadamard matrix/gate H !
3. In quantum computing systems, the hermitian operators are obtained by applying lasers, mag-

netic fields, etc., appropriately oriented and turned on or off for various time intervals. Of
course, this means the quantum system under consideration is not closed. However, by taking
it as part of a larger system which is then itself treated as closed, one can usually find a time
dependent hermitian operator acting on the original quantum system under consideration, with
parameters that can be varied as required, and which when used in Schrödinger’s gives a good
approximation to what happens in the original system.

Solution of Schrödinger’s equation for time independent Hamiltonian

In this case, in terms of an orthonormal basis of eigenvectors for H,

|ψ〉 = |ψ(t)〉 =

ψ1
...
ψn

 , H =

λ1

. . .

λn

 . (2.17)

It follows that (2.16) is equivalent to the following simple system of independent ordinary differential
equations:

dψj
dt

= −iλjψj , j = 1, . . . , n. (2.18)

This has the solution
ψj(t) = e−iλjtψj(0). (2.19)

That is, the solution |ψ(t)〉 of Schrödinger’s equation at time t, with initial state |ψ(0)〉, is

|ψ(t)〉 = U(t) |ψ(0)〉 , U(t) := e−itH =

e
−itλ1

. . .

e−itλn

 . (2.20)

See also Section F.4.

Example

2.4 Combining Quantum Systems
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Appendix A

Visualising Higher Dimensions

Sometimes it is convenient to try and visualise Rn for n ≥ 4 and Cn for n ≥ 2.

Figure A.1: 3 mutually orthogonal lines in R3, 4 in R4, n in Rn.

Exercise: Explain to your 2-D friend living in the 2-D plane of the paper, why the 3 lines (segments)
in the first diagram are projections into R2 of 3 mutually orthogonal lines in R3.

In a similar manner, explain to your 3-D friend in this room, why the 4 lines in the second diagram
are actually the projections into R3 (and then projected onto R2, but forget that part) of 4 mutually
orthogonal lines in R4.

Similarly, explain why the n ≥ 6 lines in the third diagram are actually the projections into R3 of
n mutually orthogonal lines in Rn.
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Figure A.2: 2 orthogonal 2-D real subspaces of R4, or 2 orthogonal 1-D complex lines in C2.

Exercise: Explain to someone why the above diagram represents (after “extending both rectangles
to infinity in all directions”) two 2-D real orthogonal subspaces of R4, whose only point of intersection
is the origin.

Then explain why the diagram also represents (after again extending each rectangle) two orthogonal
“complex lines”1 (which of course are each of real dimension 2) in C2.

1A complex line in Cn consists of all vectors of the form αv for some fixed non-zero v ∈ Cn and all α ∈ C.
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Appendix B

Hermitiann and Unitary Operators

I summarise the main results for linear operators T : Cn → Cn ( T : Rn → Rn) which are related to
the inner product on Cn (Rn).

Often I confuse the operator and the matrix of the operator with respect to some basis (the basis
being understood from context).

If the proofs are not relatively straightforward I will indicate this.
I also discuss normal operators, but we will not use them in this set of notes.

B.1 Inner Product Space

Here we are interested in finite dimensional spaces, often Rn or Cn.
An inner product space is a real or complex vector space together with an associated inner product

〈 , 〉. The inner product is a map into R or C with the properties

• 〈u, v〉 = 〈v, u〉 (symmetry)

• 〈αu, v〉 = α〈u, v〉 (mathematics) or 〈u, αv〉 = α〈u, v〉 (physics, computer science) (linearity in
one of the arguments and hence conjugate linearity in the other)

• 〈u, u〉 ≥ 0, and = 0 iff u = 0

The standard inner products on Rn and Cn are

• 〈u, v〉 = u1v1 + · · ·+ unvn

• 〈u, v〉 = u1v1 + · · ·+ unvn (maths) or 〈u, v〉 = u1v1 + · · ·+ unvn (physics, comp sci)

The norm of u is ‖u‖ = 〈u, u〉1/2, the distance between u and v is ‖u − v‖. The distance is a
metric.

The Cauchy-Schwarz inequality is |〈u, v〉| ≤ ‖u‖ ‖v‖.

The angle between u and v is defined in the Cn case by θ ∈ [0, π/2] and cos θ =
|〈u, v〉|
‖u‖ ‖v‖

. Warn-

ing : if v = eiφu then θ = 0, θ 6= φ.

In the Rn case we define θ ∈ [0, π] by cos θ =
〈u, v〉
‖u‖ ‖v‖

.

The inner product can be defined from its norm (so norm preserving maps are inner product
preserving).

• real case: 〈u, v〉 = 1
4

(
‖u+ v‖2 − ‖u− v‖2

)
• complex case: 〈u, v〉 = 1

4

(
‖u+ v‖2 + i‖u+ iv‖2 − ‖u− v‖2 − i‖u− iv‖2

)
Warning : Not every norm actually defines an inner product in this way. The necessary and sufficient
condition is that the norm satisfies the parallelogram identity : 2‖u‖2 + 2‖v‖2 = ‖u+ v‖2 + ‖u− v‖2.
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B.2 Operator Definitions in Terms of a “Good” Orthonormal Basis

B.2.1 Hermitian Operator

The operator T is hermitian (Cn case), symmetric (Rn case) and self-adjoint (either case) iff it
corresponds to a (real) scaling in n orthogonal directions (Cn and Rn case). Note that in the Cn
case, a “direction” corresponds to a 1-complex-dimensional subspace and hence to a 2-real-dimensional
subspace. A scaling corresponds to multiplying by a real number in each of these n complex subspaces.

More precisely, T is self-adjoint iff there is an orthonormal basis w.r.t. which T is a real diagonal
matrix.

T =

λ1

. . .

λn

 (B.1)

(We allow negative λi.) Think of the unit ball at the origin being stretched into an ellipsoid.

Figure B.1: Hermitian operator T and unitary operator U on C2, v1 ∈ span |0〉, v2 ∈ span |1〉.

Figure B.1 shows the action of T =

[
λ1 0
0 λ2

]
and U =

[
eiθ1 0
0 eiθ2

]
(see Section B.2.2) on vectors

v1 ∈ span |0〉 and v2 ∈ span |1〉. In particular, Tv1 is obtained by scaling v1 with the real factor λ1 and
Uv1 is obtained by rotating v1 in the complex line span |0〉 (a 2 real-dimensional plane) anticlockwise1

through the angle θ1.

B.2.2 Unitary Operator

U is unitary (C case) iff it corresponds to a rotation (multiplication by eiθ1 , . . . , eiθn) in n orthogonal
directions v1, . . . , vn.

More precisely, U is unitary iff there is an orthonormal basis w.r.t. which U is a diagonal matrix
with all diagonal entries having absolute value 1.

U =

e
iθ1

. . .

eiθn


The corresponding notion for orthonormal matrices (R case) is not so clean. We say that O is

orthonormal if there is an orthonormal basis such that O fixes some basis vectors, reflects other basis
vectors, and rotates in orthogonal planes determined by pairs of the remaining basis vectors.

1Note that there is an orientation on span |0〉 given by complex multiplication.
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More precisely, O is orthonormal iff there is an orthonormal basis with respect to which O has
matrix

O =



1
. . .

1
−1

. . .

−1
cos θ1 − sin θ1

sin θ1 cos θ1

. . .

cos θk − sin θk
sin θk cos θk


In particular, in R3 every orthonormal operator is a rotation around some vector followed perhaps

by a reflection in the plane orthogonal to this vector!
Think of the unit ball at the origin being rotated into itself (perhaps there is also a reflection, thus

reversing the orientation)

B.2.3 Normal Operator

T (C case) is normal iff it corresponds to multiplication by complex numbers in each of n orthogonal
directions. That is, corresponds to a stretch followed by a rotation in each of the corresponding n real
2-dimensional subspaces.

More precisely, T is normal iff there is an orthonormal basis with respect to which T is diagonal
(with complex, not necessarily real, entries). That is, T has matrix

T =

λ1e
iθ1

. . .

λne
iθn

 (B.2)

So hermitian and unitary operators are particular cases of normal operators.

B.3 Definitions in Terms of Adjoint Operator

B.3.1 Adjoint

The adjoint T ∗ of the operator T is defined by 〈T ∗u, v〉 = 〈u, Tv〉 for all u, v ∈ Cn (Rn).
With respect to any orthonormal basis, the matrix of T ∗ is the conjugate (not relevant of course

in the R case) of the transpose of T , i.e. T ∗ij = Tji = T ∗ji, where Tji = T ∗ji is the complex conjugate of
Tji.

Note (AB)∗ = B∗A∗.

B.3.2 Hermitian Operator

T is hermitian iff T = T ∗.
The =⇒ case is easy but the converse requires work. It follows from the more general result for

normal operators below. But in this special case it is easier to show the existence of an orthonormal
basis of eigenvectors.

As noted in Section B.2.1, one often says T is Hermitian in the C case and symmetric in the R
case.
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B.3.3 Unitary Operator

U is unitary (O is orthonormal) iff UU∗ = U∗U = I (OO∗ = O∗O = I).
As for hermitian/self-adjoint operators, =⇒ is easy, the converse requires work, but follows from

the more general result for normal operators.
For arbitrary matrices, being unitary is equivalent to the columns being orthonormal (norm one

and inner products of different columns equalling zero) and also equivalent to the rows having the
same property.

B.3.4 Normal Operator

T is normal iff TT ∗ = T ∗T . (=⇒ is clear from the definition. The converse requires work. The point
is to show the existence of an orthonormal basis of eigenvectors. This is sketched in [NC10, p72].

B.4 Polar Decomposition

Every linear operator T (C case) can be written in the form T = UH where U is unitary and H
is Hermitian (i.e. self-adjoint) with nonnegative e-values. That is, real nonnegative stretching in
orthogonal complex directions followed by rotations in another set of orthogonal complex directions.

If the rotations are in the same complex directions as the stretches, then the matrix is clearly
normal.

In the R case, T = OS where O is orthonormal and S is symmetric with nonnegative e-values. That
is, T is again a nonnegative stretch in orthogonal directions and then apply orthogonal transformation.

Think of taking the unit ball sitting at the origin, stretching it to an ellipsoid, and then rotating.
Similarly (C case), T = H ′U where U is unitary and H ′ is self-adjoint with nonnegative e-values.

Just take same U as before, and take H ′ = UHU∗.
Similarly for the R case.

B.5 Another Characterisation

Suppose T : Cn → Cn. Then

1. T is hermitian iff 〈Tu, u〉 is real for all u.
2. T is unitary (orthonormal) iff ‖Tu‖ = ‖u‖ for all u iff 〈Tu, Tv〉 = 〈u, v〉 for all u, v.
3. T is normal iff ‖Tu‖ = ‖T ∗u‖ for all u.

For ⇐= in 1, suppose 〈Tu, u〉 is real for all u. Then

〈Tu, u〉 = 〈Tu, u〉∗ = 〈u, T ∗u〉∗ = 〈T ∗u, u〉.

So 〈(T − T ∗)u, u〉 = 0 for all u. But if 〈Au, u〉 = 0 for all u then for all u, v

0 = 〈A(u+ v), u+ v〉 = 〈Au, v〉+ 〈Av, u〉.

Replacing v by iv and dividing through by i,

0 = 〈Au, v〉 − 〈Av, u〉.

Adding, 〈Au, v〉 = 0 for all u, v and so A = 0. So T = T ∗.

(Note: If A : Rn → Rn then 〈Au, u〉 = 0 for all u does not imply A = 0. Consider rotation by π/2
in R2.)
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Appendix C

Determinant and Trace

The following applies to both real and complex spaces, provided “vol” is defined in the same way in
both cases and is allowed to be complex if necessary.

C.1 Determinant

If A is a square n× n matrix then the determinant detA can be defined1, for example, by

detA =
∑

π∈Π{1,...,n}

(−1)πA1π(1) · . . . ·Anπ(n), (C.1)

where Π{1, . . . , n} is the set of permutations of {1, . . . , n} and (−1)π is +1 or −1 according as π is
even or odd.

Important properties are

det(I) = 1, det(AB) = det(A) det(B) (C.2)

where I is the identity matrix and A,B are square matrices of the same size.
It follows that det(S−1AS) = detA, and so det(A) is independent of choice of basis.

In particular, if A has eigenvalues λ1, . . . , λn counted with multiplicities, then

det(A) = λ1 · . . . · λn. (C.3)

Moreover, if A : V → V where V is a finite dimensional vector space and A is a linear operator,
we have shown there is a well defined notion of det(A) independent of any choice of basis.

Geometrically, and this is what footnote 1 says, det(A) is the volume change factor given by

vol[Av1, . . . , Avn] = det(A)× vol[v1, . . . , vn], (C.4)

where [w1, . . . , wn] is the parallelopiped spanned by w1, . . . , wn and “vol” is the oriented volume.

C.2 Trace

The trace tr(A) of the square matrix A is the sum of its diagonal elements:

tr(A) =
∑
i

Aii. (C.5)

It is straightforward to check
tr(I) = n, tr(AB) = tr(BA). (C.6)

1The most natural, coordinate-free and geometric way is to use exterior algebra and define detA for an operator
A : V → V to be the unique constant such that Av1 ∧ · · · ∧Avn = det(A) v1 ∧ · · · ∧ vn for any basis {v1, . . . , vn} of V .
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Here A and B need not be square; A is m × n and B is n ×m is the general situation. In general,
assuming both A and B are square of the same size so that the following three traces are all defined,

tr(AB) 6= tr(A) tr(B). (C.7)

However, since tr(S−1AS) = tr(AS−1S = tr(A), tr(A) is independent of choice of basis.

Thus if A : V → V where V is a finite dimensional vector space and A is a linear operator, then
there is a well defined notion of tr(A) independent of any choice of basis.

In particular, if A has eigenvalues λ1, . . . , λn counted with multiplicities, then

tr(A) = λ1 + . . .+ λn. (C.8)

Moreover, if A : V → V where V is a finite dimensional vector space and A is a linear operator,
we have shown there is a well defined notion of tr(A) independent of any choice of basis.

For a geometric interpretation of tr(A) suppose A has e-values λ1, . . . , λn (with multiplicities).
Then the e-values of I + tA are 1 + tλ1, . . . , 1 + tλn, and so for small t,

det(I + tA) = (1 + tλ1) · . . . · (1 + tλn) = 1 + t tr(A) +O(t2). (C.9)

Hence
d

dt

∣∣∣∣
t=0

det(I + tA) = tr(A). (C.10)

Noting (C.4), tr(A) is the rate of change of volume at t = 0 of a parallelopiped perturbed by tA.2

2By taking the matrix for A in the basis {v1, . . . , vn} as in (C.4), we see this rate of change of volume only depends
on changes in each edge of the parallelopiped in the direction of that edge.
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Appendix D

Dirac Bra-Ket Notation

This notation is particularly useful in quantum theory where we are working with vectors, dual vectors
and hermitian operators. The terminology “bra-ket” is a play on words from the bracketed expression
〈v|w〉, in which 〈v| is a bra vector and |w〉 is a ket vector, see below.

Let V be an inner product space which we usually take to be finite dimensional and usually Cn
for some n.

D.1 Kets and Bras

An element of V is called a ket vector, written |v〉 for some appropriate symbol v, and pronounced
“ket v”. With respect to some orthonormal basis (understood from context, and often the standard

basis in the case of Cn) we have the column vector notation |v〉 =

v1
...
vn

.

Examples in C2 are

|0〉 =

[
1
0

]
, |1〉 =

[
0
1

]
, |+〉 :=

1√
2

(
|0〉+|1〉

)
=

1√
2

[
1
1

]
, |−〉 :=

1√
2

(
|0〉−|1〉

)
=

1√
2

[
1
−1

]
. (D.1)

The dual vector in the dual space V ∗ which corresponds to |v〉 is written 〈v| and pronounced “bra
v”. That is, interpreting 〈v| as an operator acting on |w〉 ∈ V in the first expression below,

〈v|(|w〉) :=
(
|v〉, |w〉

)
= v∗1w1 + · · ·+ v∗nwn =

[
v1
∗ · · · vn∗

] w1
...
wn

 = 〈v| |w〉 = 〈v|w〉 (D.2)

where in the second expression ( , ) is the inner product, the third expression is just the definition of
the inner product, the fourth expression is rewriting the third as matrix multiplication, the fifth is also
matrix multiplication where 〈v| is interpreted as the row vector

[
v1
∗ · · · vn∗

]
, and the sixth expression

is the standard abbreviation of the fifth in the Dirac notation.
In particular, 〈v|w〉 is the inner product of |v〉 with |w〉. Also, 〈v| = |v〉∗ =

[
v1
∗ · · · vn∗

]
as a row

vector or 1× n matrix.

D.2 More on Inner Products

Let A : Cn → Cn be a linear operator. We often consider expressions of the form 〈v|A|w〉. In terms of
matrix multiplication this is just (from left to right) the product of the row vector

[
v1
∗ · · · vn∗

]
with

the n× n matrix A and the column vector |w〉 =

w1
...
wn

.
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As an example of working with the Dirac notation, in the (associative) product of the three matrices
〈v|A|w〉 we can bracket the second and third terms:

〈v|A|w〉 = 〈v| (A |w〉) = |v〉∗(A |w〉), (D.3)

so that 〈v|A|w〉 is the inner product of the ket vector |v〉 with the ket vector A|w〉. On the other hand,
bracketing the first and second terms,

〈v|A|w〉 = (〈v|A)) |w〉 = (A∗ |v〉)∗ |w〉, (D.4)

so 〈v|A|w〉 is also the inner product of the ket vector A∗|v〉 with the ket vector |w〉.
If A is hermitian then A = A∗, so 〈v|A|w〉 is both the inner product of |v〉 with A|w〉 and the inner

product of A|v〉 with |w〉.

D.3 Outer Products

Check that you can show all assertions in the following.

D.3.1 Definition and Matrix Version

For |v〉 , |w〉 ∈ V define the outer product, a linear map |v〉〈w| : V → V , by

|v〉〈w| (|ψ〉) = |v〉 〈w|ψ〉 = 〈w|ψ〉 |v〉 , for |ψ〉 ∈ V. (D.5)

So |v〉〈w| has range |v〉 and kernel equal to the orthogonal complement of |w〉.
The operator |v〉〈w| is called a dyad.
In terms of matrices, |v〉〈w| is given by matrix multiplication:

|v〉〈w| =

v1
...
vn

 [w1
∗ · · ·wn∗

]
=

v1w
∗
1 . . . v1w

∗
n

...
. . .

...
vnw

∗
1 . . . vnw

∗
n

 . (D.6)

D.3.2 Orthogonal Projectons

If |v〉 is a unit vector then
|v〉〈v| (D.7)

is orthogonal projection onto (the space spanned by) |v〉.
If W is a subspace of V with orthonormal basis {|v1〉 , . . . , |vk〉} then

k∑
i=1

|vi〉〈vi| (D.8)

is orthogonal projection onto W .
In particular, if {|v1〉 , . . . , |vn〉} is an orthonormal basis for V then the identity map I satisfies

I =

n∑
i=1

|vi〉〈vi| . (D.9)

If M has matrix elements Mij w.r.t. the computational basis then

M =
∑
i,j

Mij |i〉〈j| , Mij = 〈i|M |j〉 . (D.10)

If T is hermitian with (necessarily real) eigenvalues λi and orthonormal eigenvectors |vi〉 (forming
a basis for V ) then

T =
∑
i

λi |vi〉〈vi| . (D.11)
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D.4 Computing with Dirac Notation

In computing with the bra-ket notation one is usually dealing with expressions such as 〈v|A|w〉 or
|v〉 〈w|ψ〉 etc., and often much more complicated, which can be treated as a product of matrices.

Consequence and points to note are:
• bracketing is allowed in any order consistent with the associative rule for multiplying matrices,
• expressions such as 〈w|ψ〉 are an abbreviation for the product 〈w||ψ〉,
• scalar quantities such as 〈w|ψ〉 can be moved through the expression,
• adjoints of a product are the product of the adjoints multiplied in the reverse order,
• adjoints of matrices are conjugate transposes, so adjoints of scalars are their complex conjugates,

of hermitian matrices A are again A, of unitary matrices U are U−1, of bras 〈v| are kets |v〉, and
of kets |v〉 are bras 〈v|.

There will be many examples in these notes.1

1See (2.10), . . .
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Appendix E

The Bloch Sphere

Connect back to Remark 4
This is a very useful way of representing qubits as points on the unit sphere in R3. Recall that a

qubit is just an equivalence class of points on the unit sphere in C2, where two qubits are equivalent
if they agree up to a global phase factor eiζ for some ζ ∈ R.

The unit sphere S3 ⊂ C2 has 3 real dimensions, and so after factoring out by the given equivalence
relation is a 2 real dimensional surface.

The coordinate mapping Any qubit |ψ〉 = α |0〉 + β |1〉 ∈ S3, after using polar coordinates for
α and β and multiplying through by a (irrelevant) global phase factor, can be written in the form
|ψ〉 = r1 |0〉 + r2e

iφ |1〉 where 0 ≤ r1, 0 ≤ r2, r
2
1 + r2

2 = 1, 0 ≤ φ < 2π. Hence |ψ〉 can be written in
the form

|ψ〉 = cos
θ

2
+ sin

θ

2
eiφ, 0 ≤ θ ≤ π, 0 ≤ φ < 2π. (E.1)

This representation is unique unless θ = 0 or θ = 1.
By using {θ, φ} as spherical coordinates we obtain a unique correspondence between qubits (re-

member that qubits correspond to equivalence classes of points on the unit sphere in C2) and points
on the unit sphere in R3. See Figure E.1. (We need cos θ2 with 0 ≤ θ ≤ π rather than cos θ with
0 ≤ θ ≤ π/2 for this.)

Figure E.1: Bloch Sphere. See (E.4) for notation. ([Vaz12, Notes Chapter 10, Fig. 10.1]).

The point on the unit sphere with spherical coordinates {θ, φ} has Cartesian coordinates

(sin θ cosφ, sin θ sinφ, cos θ) = (sin θ eiφ, cos θ), (E.2)

where for the second expression we have identified the x–y plane with the complex plane. This is often
convenient for calculations.
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Antipodal points = orthonormal basis One point that can initially cause confusion is that the
pair of antipodal points (θ, φ) and (π − θ, π + φ) on the Bloch sphere correspond to an orthonormal
basis in C2.1

Important pairs of antipodal points On the Bloch sphere the north pole corresponds to |0〉
(also written |z〉) since the spherical coordinates are (0, φ), and the south pole corresponds to |1〉 (also

written |−z〉 ) since the spherical coordinates are (π, φ). The cartesian coordinates are z =

0
0
1

 ∈ R3

.

Similarly, with x =

1
0
0

, y =

0
1
0

, and using the notation of (2.1),

|+〉 =
1√
2
|0〉+

1√
2
|1〉 = cos

(π
4

)
|0〉+ sin

(π
4

)
|1〉 = |x〉 , (θ, φ) =

(π
2
, 0
)

|−〉 =
1√
2
|0〉 − 1√

2
|1〉 = cos

(π
4

)
|0〉+ sin

(π
4

)
eiπ |1〉 = |−x〉 , (θ, φ) =

(π
2
, π
)

|i〉 =
1√
2
|0〉+ i

1√
2
|1〉 = cos

(π
4

)
|0〉+ sin

(π
4

)
eiπ/2 |1〉 = |y〉 , (θ, φ) =

(π
2
,
π

2

)
|−i〉 =

1√
2
|0〉 − i 1√

2
|1〉 = cos

(π
4

)
|0〉+ sin

(π
4

)
ei3π/2 |1〉 = |−y〉 , (θ, φ) =

(
π

2
,
3π

2

)
(E.3)

Summarising,

|z〉 = |0〉 , |−z〉 = |1〉 , |x〉 = |+〉 , |−x〉 = |−〉 , |y〉 = |i〉 , |−y〉 = |−i〉 . (E.4)

1Since cos π−θ
2
|0〉 + sin π−θ

2
ei(π+φ) |1〉 = sin θ

2
|0〉 − cos θ

2
eiφ |1〉 is clearly a unit vector orthogonal to cos θ

2
|0〉 +

sin θ
2
eiφ |1〉.
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Appendix F

Functions of Normal Operators

F.1 Examples of Interest

Let V be a finite dimensional complex inner product space. For us it will be a state space. You can
think of V = Cn.

Let T : V → V be a normal operator. Recall from Appendix B.2.3 that this means T has an
orthonormal basis of eigenvectors. We are interested in the case T is hermitian or unitary, but the
more general case is just as straightforward.

Let f : C→ C be some function. Then can we make sense of f(T ) in some useful way?
We will be particularly concerned with

cos(H), sin(H), exp(iθH), (F.1)

where exp(u) = eu is the exponential function and H is hermitian.

F.2 Power Series Definition

If f is the squaring function, i.e. f(z) = z2, then we define f(T ) = T 2. Similarly if f(z) = zk for some
positive integer k we define f(T ) = T k. We can also define T−1 to be the inverse of T , provided T is
invertible.

If f(z) = a0 + a1z + a2z
2 + · · · converges for |z| < R (i.e. f is analytic) then we can define

f(T ) = a0 + a1T + a2T
2 + · · · . This will converge if all entries in the standard matrix representation

are ≤ R′ for some R′ depending on R. In particular, for the functions cos(z), sin z and eaz for any
constant a, the series converges for all T . However, this is not the approach we take here. It is
mentioned just for comparison with the literature.

F.3 Definition for Normal Operators

For normal matrices we have the following more natural and convenient approach. In particular, there
are no differentiability requirements on f , and the definition of f(T ) depends only on the values of f
for the eigenvalues of T .1

With respect to any orthonormal basis of eigenvectors we have

T =

α1

. . .

αn

 =⇒ f(T ) :=

f(α1)
. . .

f(α1)

 . (F.2)

Note this is not a coordinate dependent definition! We are using an orthonormal basis of eigenvectors
for T . Any allowable change of basis vectors for T (e.g. reordering or phase changes) will have the
same effect on f(T ), i.e. no change on the actual operator.

1This approach works for diagonalisable matrices in general. But it is not as stable under convergence of matrices as
in the case of normal matrices where we are restricting to orthonormal bases. See [HJ91, §6.2.37 Theorem, p 433].
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F.4 Matrices for the Schrödinger Equation

If H is hermitian as in (B.1) with matrix below for some orthonormal basis of eigenvectors {E1, . . . , En}
corresponding to eigenvalues λ1, . . . , λn, then U(t) := e−itH has the matrix shown for the same or-
thonormal basis of eigenvectors (now also for e−itH).

H =

λ1

. . .

λn

 , U(t) := e−itH =

e
−itλ1

. . .

e−itλn

 . (F.3)

It follows immediately that U(t) is unitary.
It is also clear from its matrix representation that for any unitary operator U there is a unique

hermitian operator H such that U = exp(−iH).

If t is interpreted as time then U acts on the H eigenspace Ei for λi by rotation with velocity λi,
and in the clockwise direction if λi > 0.

In Figure F.1 let H =

[
λ1 0
0 λ2

]
and U =

[
e−itλ1 0

0 e−itλ2

]
= exp(−itH).

Figure F.1: Schematic representation for the 2 orthogonal eigenspaces E1, E2 ⊂ C2 and for the unitary
operator U = exp(−itH) as it rotates vectors in these eigenspaces. The direction of rotation is shown
in case λ1, λ2 > 0.

See also the Schrödinger Equation 2.16
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Appendix G

The Pauli Matrices

Exercise: Verify all statements in the following.

The Pauli matrices are ubiquitous in the theory of quantum computation. Here they are with their
standard notations.

σ0 = I =

[
1 0
0 1

]
, σ1 = X =

[
0 1
1 0

]
,

σ2 = Y =

[
0 −i
i 0

]
, σ3 = Z =

[
1 0
0 −1

]
.

(G.1)

Usually σ0 is omitted from the list. It should be clear from context when this is not the case.

They are hermitian. Clearly σi = σ∗i .
They are unitary. It is easy to check that σiσ

∗
i = I.

They are trace free, i.e. tr(σi) = 0, and det(σi) = −1. It follows that they each have eigenvalues ±1.

They satisfy the following identities.1

σ2
i = I, σiσj = −σjσi if i 6= j,

σ1σ2 = iσ3, σ2σ3 = iσ1, σ3σ1 = iσ2.
(G.2)

Using the notation of (2.1)
• σ3 has eigenvectors |0〉 and |1〉 with eigenvalues +1 and −1 respectively,
• σ1 has eigenvectors |+〉 and |−〉 with eigenvalues +1 and −1 respectively,
• σ2 has eigenvectors |i〉 and |−i〉 with eigenvalues +1 and −1 respectively.

Every hermitian matrix H in C2 can be uniquely represented as follows with (n0, n1, n2, n3) ∈ R4:2

H =

[
n0 + n3 n1 − in2

n1 + in2 n0 − n3

]
= n0I + n1σ1 + n2σ2 + n3σ3. (G.3)

The set of all such matrices is a real vector space H with basis vectors σ0, σ1, σ2, σ3.3

The trace free hermitian matrices form a subspace H0 ⊂ H. Every H0 ∈ H0 can be written
uniquely in the form

H0 =

[
n3 n1 − in2

n1 + in2 −n3

]
= n1σ1 + n2σ2 + n3σ3 (G.4)

for some (n1, n2, n3) ∈ R3. This gives a vector space isomorphism4 between H0 and R3, which will be
particularly useful in terms of the Bloch sphere map.

An important example is the Hadamard operator H = 1√
2

[
1 1
1 −1

]
. Then H ∈ H0, H2 = I,

H = 1√
2
(σ1 + σ2), det(H) = −1, similar to the Pauli matrices themselves.

1Note the cyclic ordering in the second line. Clearly if follows σ1σ3 = −iσ2, σ2σ1 = −iσ3, σ3σ2 = −iσ1.
2The off diagonal entries are arbitrary complex conjugates, the main diagonal entries H11 and H22 are arbitrary reals

— let n0 = 1
2
(H11 +H22), n3 = 1

2
(H11 −H22).

3In fact an inner product space with Hilbert Schmidt inner product (A,B) := 1
2

trA∗B = 1
2

trAB.
4In fact, an inner product space isomorphism.
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