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1 Finite elements and finite differences

The problem is to find approximations to solutions of P.D.E.’s defined over some domain Ω ⊂ IRn and
to examine the error in various norms.

There are two main approaches; finite differences and finite elements.
Finite difference methods are characterised by replacing derivatives by difference quotients.
Finite element methods are characterised:

• by replacing a variational problem in H1(Ω) by the analogous problem in some finite dimensional
“discrete” function space X approximating H1(Ω) (often a subspace) — the differential operator
remains unchanged;

• X has the property that it arises from a triangulation of Ω, and has a basis consisting of functions
defined locally and having small support.

Finite elements are much more versatile if n ≥ 2, at least for variational problems, are well adapted
to domains with complicated boundary, and have a well-developed mathematical theory.

2 The smooth problem

Consider the model elliptic problem (Poissons’s equation):
Find u ∈ H1(Ω) such that

−∆u = f in Ω (⊂ IRn), (1)

u = g on ∂Ω, (2)

where f and g are smooth, and ∂Ω is smooth. In weak form this is∫
Ω
DuDψ =

∫
Ω
fψ ∀ψ ∈ H1

0 (Ω), (3)

u = g on ∂Ω. (4)

3 Triangulations

In order to give a discrete analogue of (3) and (4) we first triangulate Ω. See Figure 1.
For various h > 0, let Th be a triangulation of Ω in a sense that can easily be made precise. Each

triangle has side ≤ h with interior angles are bounded away from zero independently of h.

Ωh :=
⋃
T∈Th

T.

If Ω is convex then Ωh ⊂ Ω. If Ω has piecewise linear boundary then Ωh = Ω, provided each corner
of ∂Ω is a node of Th.

The nodes of Th are denoted by

v1, . . . , vM , vM+1, . . . , vN ,

where v1, . . . , vM are interior nodes and vM+1, . . . , vN are boundary nodes.
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Figure 1: Ω in blue and Ωh in red.

4 Finite element spaces

1. Define the finite element space or discrete space by

Xh := {v ∈ C0(Ωh) | v ∈ P1(T ) ∀T ∈ Th},

where P1(T ) denotes the set of polynomials of degree one over T . Thus v ∈ Xh iff v is continuous
and piecewise linear over Ωh. Clearly,

Xh ⊂ H1(Ωh).

2.
Xh0 := {v ∈ Xh | v = 0 on ∂Ωh}.

Clearly Xh0 ⊂ H1
0 (Ωh), and Xh0 ⊂ H1

0 (Ω) if Ω is convex and functions in Xh0 are extended to
be zero in Ω \ Ωh.

3. A natural basis for Xh consists of the hat functions φi ∈ Xh, for i = 1, . . . , N , defined by

φi(vj) = δij .

4. A basis of Xh0 consists of those φi for 1 ≤ i ≤M , i.e. such that vi are interior nodes.

5 The discrete problem

The simplest and most commonly treated case is when ∂Ω is piecewise linear, so Ω = Ωh; and g = 0
on ∂Ωh. Keep this case in mind in the following.

The analogue of (3) and (4) is:
Find uh ∈ H1(Ωh) such that∫

Ωh

DuhDψh =

∫
Ωh

fψh ∀ψh ∈ Xh0, (5)

uh = Ihg on ∂Ωh, (6)

where Ihg is the piecewise linear interpolant of g on ∂Ωh, characterised by

Ihg(vi) = g(vi), for i = M + 1, . . . , N.

To compute uh, let

uh =
N∑
i=1

αiφi.

Thus αi = uh(vi). The problem is to find the αi.
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It is sufficient to take as test functions ψh in (5) the basis functions φ1, . . . , φM , and so∑
i

αi

∫
Ωh

DφiDφj︸ ︷︷ ︸
aij

=

∫
Ωh

fφj︸ ︷︷ ︸
bj

j = 1, . . . ,M,

αj = g(vj) j = M + 1, . . . , N.

This is a system of N equations for N unknowns αi. It is easily checked to be positive definite and so
has a unique solution.

Remarks

1. The matrix [aij ] is called the stiffness matrix and the vector (bi) is called the load vector.

2.
∫

Ωh
fφi is usually not known exactly, but can be computed to any desired degree of accuracy.

3. The matrix [aij ] is sparse, i.e. for any i only 5 or 6 of the j are such that aij 6= 0. This is extremely
important computationally, as a sparse N ×N linear system can often be solved (iteratively) in
the order of O(N) operations, rather than O(N3) operations.

6 Statement of error estimates

In Section 9 we will prove the standard error estimates:

Proposition 6.1. Let u and uh solve the smooth and discrete problems (3)-(4) and (5)-(6) respec-
tively. Then

|u− uh|H1(Ωh) ≤ ch|u|H2(Ωh), (7)

‖u− uh‖L2(Ωh) ≤ ch2|u|H2(Ωh). (8)

Here and elsewhere, | · | denotes a semi-norm, and ‖ · ‖ denotes a norm. It is often convenient to
work with semi-norms since they scale well.

Remarks

1. These results are optimal with respect to powers of h, in the sense that up to this order of error
there is typically no member of Xh closer to u; see Remarks 3 and 4 in Section 7.

2. If Ω has piecewise linear boundary, then we can replace Ωh by Ω in (7) and (8).

3. If Ω is convex, then Ωh ⊂ Ω. Moreover, for any function u,

‖u‖H1(Ω\Ωh) ≤ ch‖u‖H2(Ω).

as follows from trace theory and integration over the boundary strip. Together with (7) and (8)
this can be interpreted as implying that uh provides an O(h) approximation to u in the H1

norm.

Concerning an O(h2) approximation in the L2 norm; suppose uh is extended from each boundary
triangle T to the corresponding “curved” triangle T̃ which has part of its boundary on ∂Ω, so
that the extended function ũh is linear on T̃ .

Then trace theory and integration over the boundary strip, together with the fact ‖u−uh‖L2(∂Dh) ≤
ch|u|H1(∂Dh) (c.f. Section 7), implies

‖u− uh‖L2(Ω\Ωh) ≤ ch2‖u‖H1(Ω).

This, together with (8), can be interpreted as saying that uh provides an O(h2) approximation
to u in the L2 norm.
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4. In case Ω is not convex, or piecewise linear, there are analogous results concerning O(h) and
O(h2) approximation in the H1 norm and L2 norm respectively, but the statements and proofs
are a little more complicated.

5. Computationally, one usually refines an initial fairly course grid by repeatedly halving the grid
size. The correct power of h in (7) and (8) typically shows up after a few iterations by computing
the difference between uh−uh/2 in the appropriate semi-norm or norm. Moreover, one can then
estimate c.

7 Interpolation and approximation theory

Before proving the error estimates in the previous section, we need to consider to what extent an
arbitrary “smooth” function can be approximated by discrete functions.

If u ∈ H2(Ω) and n = 1, 2, 3 then u is continuous and so one can define the piecewise linear
interpolant Ihu by

Ihu ∈ Xh, Ihu(vi) = u(vi) for i = 1, . . . , N.

Then we have the following:

Proposition 7.1. For n = 1, 2, 3

|u− Ihu|H1(Ωh) ≤ ch|u|H2(Ωh), (9)

‖u− Ihu‖L2(Ωh) ≤ ch2|u|H2(Ωh). (10)

Remarks

1. An important case is when ∂Ω is piecewise linear, and so Ω = Ωh.

2. The powers of h can be remembered by noting that if Ωh is replaced by T (∈ Th) in (9) or (10),
then both sides of the inequality scale the same in h.

3. In particular, the H1 distance from Xh to u ∈ H2(Ωh) is ≤ ch|u|H2(Ωh) if n = 1, 2, 3. If n > 3
then this is still true, but it is necessay to use a different definition of Ihu. For example, one
can define Ihu(vi) at nodes vi to equal the integral average of u over those triangles having vi
as a vertex. This idea is due to Clement, Scott and others; the previous proof has only to be
modified a little.

4. The Proposition is optimal in the sense that, up to powers of h, one cannot find a member of
Xh closer to u than Ihu, in either the H1 semi-norm of L2 norm. Moreover, one does not obtain
better estimates even if u is C∞.

5. These results generalise, with a similar proof, to Wm,p norms and to higher order interpolants.
See also Section 10.

Proof. The proof is set out in a manner which is easily generalised to other finite element spaces.

1. The unscaled estimate: Let T̂ be any “reference” triangle; i.e. a triangle with sides ≤ 1 and
interior angles bounded away from zero. (Members of the triangulation T will later be obtained
by scaling an appropriate T̂ .) Suppose Iv is the linear interpolant of v on T̂ , i.e. the unique
member of P1(T̂ ) agreeing with v at the vertices of T̂ . Then

‖u− Iu‖H1(T̂ ) = ‖u− ψ − I(u− ψ)‖H1(T̂ ) for any ψ ∈ P1(T̂ ),

since Iψ = ψ

≤ ‖u− ψ‖H1(T̂ ) + ‖I(u− ψ)‖H1(T̂ )

≤ c‖u− ψ‖H2(T̂ ) by (a) below

≤ c|u|H2(T̂ ) for suitable ψ, by (b) below.
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(a) Boundedness of I: If v ∈ H2(T̂ ) then

‖Iv‖H1(T̂ ) ≤ c‖Iv‖C0(T̂ ) since Iv ∈ P1(T̂ ),

a finite dimensional space

≤ c‖v‖C0(T̂ ) by definition of I

≤ c‖v‖H2(T̂ ) by Sobolev imbedding.

Moreover, elementary arguments show that c depends only on the upper bound (here 1) on
the length of the sides, and on the interior angle bounds for T̂ ; c.f. the first paragraph in
the proof of Proposition 8.1.

(b) A Poincaré inequality : By a compactness argument ∃ψ ∈ P1(T̂ ) such that

‖u− ψ‖H2(T̂ ) ≤ c|u|H2(T̂ ). (11)

As before, c is independent of T̂ .

2. The scaled estimate: It follows from the unscaled estimate that

|u− Iu|H1(T̂ ) ≤ c|u|H2(T̂ ), ‖u− Iu‖L2(T̂ ) ≤ c|u|H2(T̂ ).

By scaling, squaring, and adding, and taking square roots

|u− Ihu|H1(Ωh) ≤ ch|u|H2(Ωh), ‖u− Ihu‖L2(Ωh) ≤ ch2|u|H2(Ωh).

Note that Ihu ∈ H1(Ωh) and hence u− Ihu ∈ H1(Ωh). In particular, the previous additions are
justified.

8 Inverse estimates

Since Xh is finite dimensional, all norms are comparable. In particular, higher norms can be estimated
in terms of lower norms, although the constant will depend on h and blow-up as h → ∞, and hence
as Xh “approaches” H1(Ω). (The rate of blow-up is important; and could perhaps be more utilised
in analysing smooth problems.) For example:

Proposition 8.1. If ψh ∈ Xh then

|ψh|H2 ≤ ch−1|ψh|H1 , (12)

|ψh|H1 ≤ ch−1‖ψh‖L2 . (13)

Proof. With T̂ as before,
|ψ|H2(T̂ ) ≤ c|ψ|H1(T̂ )

for ψ ∈ P1(T̂ ). This essentially comes from the finite dimensionality of P1(T̂ ), which implies all norms

are equivalent.
(

More precisely, take a fixed T̂ . Then the result is true; noting that we can use the

H1 semi-norm on the right since it is zero only if ψ is a constant; in which case the H2 semi-norm
is also zero. The fact that we can use a fixed c if the sides of T̂ are bounded above and the interior
angles are bounded below, follows from elementary considerations by using a controlled one-one map

from some fixed T̂ .
)

From scaling,
|ψh|H2(T ) ≤ ch−1|ψ|H1(T )

for any ψh ∈ P1(T ) and T ∈ Th. Squaring and summing over Th gives (12).
The proof of (13) is similar.

Remarks

1. The powers of h can, as usual, be read off by a scaling argument.

2. The results easily generalise to other norms.
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9 Proof of error estimates

To simplify the arguments:

Assume Ω is convex or ∂Ω is piecewise linear.

Proof. 1 Proof of (7): Subtracting (3) and (5)∫
Ωh

(Du−Duh)Dψh = 0 if ψh ∈ Xh0,

since we may extend ψh to be zero in Ω \ Ωh. Hence

0 =

∫
Ωh

(Du−Duh)(Duh −DIhu) as uh = Ihu on ∂Ωh

=

∫
Ωh

(Du−Duh)(Duh −Du+Du−DIhu).

Hence
‖Du−Duh‖L2(Ωh) ≤ ‖Du−DIhu‖L2(Ωh),

and so
|u− uh|H1(Ωh) ≤ ch|u|H2(Ωh)

from (9). This proves (7), at least for the most important cases n = 1, 2, 3. (If n > 3, slightly more
involved arguments are needed, since Ihu is not well-defined.)

2 Proof of (8) with h2 replaced by h: Note that

‖u− uh‖L2(∂Ωh) = ‖u− Ihu‖L2(∂Ωh)

≤ ch|u|H1(∂Ωh)

≤ ch‖u‖H2(Ωh). (14)

by interpolation theory similar to that in Section 7 and by trace theory.
(

In the case of homogeneous

boundary data and piecewise linear boundary, we trivially have u = uh = 0 on ∂Ωh = ∂Ω, and so (14)

is trivial.
)

From this, (7) and a Sobolev type estimate,

‖u− uh‖L2(Ωh) ≤ ch‖u‖H2(Ωh).

3 Proof of (8): We use the Aubin-Nitsche “trick” of solving for the error to obtain the optimal
power of h in (8).(

For simplicity we assume piecewise linear boundary ∂Ω and that g = 0, see (2). But a similar

proof works for general Ω and g. The differences are that one should work over Ωh rather than Ω; define
u by ∆u = f in Ωh and u = Ihg on ∂Ωh; define w as below except that u is replaced by u and Ω by
Ωh; estimate ‖u−uh‖2L2(Ωh) in the way ‖u−uh‖2L2(Ω) is estimated below; and then (straightforwardly)

estimate ‖u− u‖2L2(Ωh).
)

Assume g = 0 and ∂Ω is piecewise linear.
Define w by

−∆w = u− uh in Ω (15)

w = 0 on ∂Ω. (16)

In weak form, (15) becomes ∫
Ω
DwDψ =

∫
Ω

(u− uh)ψ ∀ψ ∈ H1
0 (Ω). (17)
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Then

‖u− uh‖2L2(Ω) =

∫
Ω
|u− uh|2

=

∫
Ω

(Du−Duh)Dw from (17) as u− uh ∈ H1
0 (Ω)

=

∫
Ω

(Du−Duh)(Dw −DIhw) subtracting (5) and (3),

since Ihw ∈ H1
0 (Ω)

≤ |u− uh|H1(Ω) |w − Ihw|H1(Ω)

≤ ch|u|H2(Ω) h|w|H2(Ω) by (7) and (9)

≤ ch2|u|H2(Ω) ‖u− uh‖L2(Ω) by elliptic regularity theory.

This gives (8).

10 Generalisations

1 One can consider many other finite element spaces, for example globally C0 and piecewise quadratic.
For higher order problems, e.g. involving the bi-Laplacian, one requires at least global C1,1 elements.

2 For 0 < α < 1 and Ω ⊂ IRn, let

|u|Hα(Ω) :=

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|n+2α
.

For s = k + α, 0 < α < 1, k ∈ N , let

|u|Hs(Ω) := |Dku|Hα(Ω).

For s > 0,
‖u‖2Hs(Ω) := ‖u‖2L2(Ω) + |u|2Hs(Ω).

Similar definitions apply to ∂Ω, with n replaced by n− 1.
These spaces are important:

1. If g ∈ L2(∂Ω) then there exists a unique harmonic extension u to Ω with trace g, and moreover
for s ≥ 0

‖u‖
Hs+1

2 (Ω)
≤ c‖g‖Hs(∂Ω).

2. Conversely, for any u ∈ H1/2(Ω), u has a well-defined trace g on ∂Ω and for s ≥ 0

‖g‖Hs(∂Ω) ≤ c‖u‖Hs+1
2 (Ω)

.

3 The interpolant Ihu defined in Remark 2 of Section 7 satisfies

|u− Ihu|Hr ≤ chs−r|u|Hs

for 0 ≤ r ≤ 1, r ≤ s, 0 ≤ s ≤ 2, where | · |H0 := ‖ · ‖L2 .
The hs−r comes from scaling considerations as in Step 2 in the proof in Section 7.
The r ≤ 1 comes from the additive requirement in Step 2, which requires Xh ⊂ Hr, and is true iff

r ≤ 1.
The s ≤ 2 comes from the Poincaré inequality in Step 1(b), since ψ ∈ P1(T ).
If Ih is the standard interpolation operator, then 0 < s ≤ 2 is replaced by 1/2 < s ≤ 2 for n = 1,

by 1 < s ≤ 2 for n = 2, and by 3/2 < s ≤ 2 for n = 3. The lower bound on s corresponds to the
requirement Ihu be well-defined if u ∈ Hs, i.e. the requirement Hs ⊂ C0.

Similar considerations indicate the interpolation results one can expect in other situations.
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